Materials Engineering (MATL)
Prerequisites: MATL 260 or parallel.
Description: Engineering behavior of materials with emphasis on macroscopic properties; relationship between these properties, processing history, composition and microstructure. Introduction to the use of metallographic tools used in interpretation.
Description: Relation of atomic, molecular and crystal structure to the physical, mechanical and chemical properties of metals, alloys, polymers and ceramics. Experience in investigation of properties of engineering materials.
Description: Emphasizes those principles at the atomistic or molecular level that relate mechanical properties and behavior of different classes of materials to their structure and environment.
Prerequisites: MATL 360.
Description: Application of scientific principles in the laboratory to the analysis of materials problems and selection of engineering materials.
Prerequisites: PHYS 212.
Description: Principles of crystallography. Production and properties of X-rays. Interaction of X-rays with atoms and the nature of diffraction (direction and the intensities of diffracted beams). Diffraction patterns and intensity measurements.
Prerequisites: MATL 360 or equivalent.
Description: Principles of alloying; alloy selection; modification of the physical properties of structural alloys by thermal, mechanical, and chemical treatment; solidification and joining phenomena.
Description: Rational selection procedure for the most suitable materials for each particular mechanical design. Introduction of materials selection charts and the concept of materials performance indices. Case studies in mechanical design, taking materials selections, shape and process into account. Projects on materials selection at the design concept and the design embodiment stages.
Description: Basic principles of powder metallurgy, with emphasis on methods of producing metal powders, determination of their characteristics; the mechanics of powder compaction; sintering methods and effects; and engineering applications.
Description: Metallurgical tools for analysis of failures; types and modes of failures; sources of design and manufacturing defects. Case histories utilized to illustrate modes of failures and principles and practices for analysis. Design concepts and remedial design emphasized with these case studies. Several projects involving case analyses and design by students included.
Description: Materials thermodynamics of closed systems, introduction to liquid and solid solution alloys, relationship to gas phase, application to binary systems.
Prerequisites: PHYS 212.
Description: Introduction to electron beam instruments. Electron interactions with materials. Basic aspects of electron diffraction, image formation and spectrum generation by materials. Acquisition and analysis of images, diffraction patterns and spectral data. Resolution and sensitivity limits of electron probe methods. Practical experience in the use of electron microscopes for characterization of materials.
Description: Unit operations and processes utilized in production of ferrous, nonferrous, and refractory metals. Examples of production techniques for metal bearing ores, scrap metals, and domestic waste. Control of impurity and alloy content and their relationship to physical properties.
Prerequisites: Permission
Description: The course introduces the optical and electronic processes in inorganic and organic molecules and polymers that govern the behavior of practical organic electronic and optoelectronic devices.
Description: Special topics in materials engineering and related areas.