Biological Systems Engineering (BSEN)
Description: Description of careers in biomedical, environmental, water resources, food and bioproducts, and agricultural engineering. The human, economic and environmental impacts of engineering in society. Communication, design, teamwork, and the role of ethics and professionalism in engineering work.
Prerequisites: MATH 106 or parallel.
Description: Problem solving techniques and procedures through the use of Excel, MATLAB, and graphical methods. Emphasis on problem/solution communications with topics and problems from agricultural engineering and biological systems engineering.
Description: Use of computer-aided design software to communicate engineering ideas. Specifications, dimensioning, tolerancing, 2- and 3-D model development, topographic mapping, and process layout with environmental, bioprocess, and biomedical emphases.
Prerequisites: Sophomore standing. Credit toward the degree may be earned in only one of BSEN 206/CONE 206 or CHME 452
Description: Introduction to methods of economic comparisons of engineering alternatives: time value of money, depreciation, taxes, concepts of accounting, activity-based costing, ethical principles, civics and stewardship, and their importance to society.
Prerequisites: MATH 106
Description: Physical properties important to the design of harvesting, storage, and processing systems for agricultural crops; principles and techniques for measurement of properties including frictional effects, particle size, strength, moisture content, specific heat, and thermal conductivity.
Description: Introduction to the laws of thermodynamics and their application to biological and environmental systems. Zeroth, first, second, and third laws; open and closed systems; enthalpy and specific heat; and Gibb's free energy and chemical potential for biological and environmental systems. Applications to biochemical potentials, water potential, absorption, osmosis, radiation, membranes, surface tension, and fugacity. Thermodynamic cycles as they apply to living systems.
Prerequisites: MATH 221 or parallel
Description: Developing concepts in instrumentation relevant to agricultural and biological systems. Fundamental concepts of charge, current, voltage, impedance, power, and circuit analysis within the context of biological engineering. Introduction to sensors and their applications. Data collection using modern acquisition hardware and software. Electrical safety and effects of electricity on the human body.
Prerequisites: MATH 221
Description: Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems.
Description: Mathematical modeling of biophysical systems. Continuous and discrete signals. Signal representation, system classification, impulse response, convolution, Fourier analysis, transfer functions, difference-equation approximations of differential equations. Basic filtering concepts.
Description: Research areas and applications related to biomedical engineering including bioelectricity, biosensors, biomechanics, cardiovascular mechanics, tissue engineering, biotechnology, and medical imaging. Identifying engineering methods used to develop biomedical technologies and communicating technical knowledge to a wide variety of audiences.
Prerequisites: CHEM 109A (grade of C or better) & CHEM 109L or CHEM 110A (grade of C or better) & CHEM 110L or CHEM 113A (grade of C or better) & CHEM 113L, and MATH 107 (grade of C or better)
Description: Introduction to principles of environmental engineering including water quality, atmospheric quality, pollution prevention, and solid and hazardous wastes engineering. Design of water, air, and waste management systems.
Prerequisites: Good standing in the University Honors Program or by invitation; CHEM 109A (grade of C or better) & CHEM 109L or CHEM 110A (grade of C or better) & CHEM 110L or CHEM 113A (grade of C or better) & CHEM 113L, and MATH 107 (grade of C or better)
Description: Introduction to principles of environmental engineering including water quality, atmospheric quality, pollution prevention, and solid and hazardous wastes engineering. Design of water, air, and waste management systems.
Prerequisites: CIVE 321 or parallel
Description: Environmental engineering experiments, demonstrations, field trips, and projects. Experiments include the measurement and determination of environmental quality parameters such as solids, dissolved oxygen, biochemical and chemical oxygen demand, and alkalinity.
Description: Development of the concepts of stress and strain relevant to agricultural and biological systems. Stress analysis of axial, torsional, and bending stresses, combined loading analysis, deflection evaluation, static and dynamic failure theory. Practical applications in agricultural and biological systems will be discussed.
This course is a prerequisite for: AGEN 443
Prerequisites: PHYS 212 or ECEN 211 or AGEN/BSEN 260, and MECH/CIVE 310 or CHME 332 or parallel, and professionally admitted engineering student.
Description: Fundamentals of Power systems for machines. Introduction to fluid power (hydraulics, pneumatics), pumps, motors, cylinders, control devices and system design. Selection of electric motors as power sources, operating characteristics and circuits. Selection of internal combustion engines as power sources.
Description: Introduction to concurrent transport of energy and mass in biological and environmental processes. Modes of heat transfer, steady and non-steady state heat conduction, convective heat transfer, radiative heat transfer, and heat transfer with phase change. Equilibrium, kinetics, and modes of mass transfer, diffusion, dispersion, and convective mass transfer. Soil freezing and thawing, energy and mass balances of crops, diffusivities of membranes, photosynthesis, human and animal energy balances, and respiration.
Description: Introduction to soil and water resources and the engineering processes used to analyze watersheds. Soil water relations, evapotranspiration, precipitation, runoff, erosion, flow in natural waterways and through reservoirs, wetland and groundwater hydrology, and water quality. Geographic information system utilized to develop maps and analyze watershed characteristics. A selected watershed is investigated.
This course is a prerequisite for: ENVE 401
Recommended: AGEN/BSEN 350 or CIVE 352 or CIVE 353 or AGST/WATS 354; and BIOS 101 or LIFE 121 or NRES 220.
Description: Introduction to principles of ecological engineering including ecosystems ecology, river restoration, constructed wetlands, green infrastructure stormwater management, and environmental restoration. Ecological design of water and land protection practices. Includes introduction to water pollution and contaminant fate and remediation.
Description: Introduction to basic human movement involving kinematics, kinetics, and other quantitative analysis including linear and angular position, velocity, and acceleration. Emphasis on the muscular and skeletal systems as well as other basic human systems. Human capabilities and injuries will demonstrate the limitations of the human body.
Description: Application of engineering methods to the development of assistive technology for people with injuries and disabilities. Characterization of the physical and mental capabilities of people with impairment, universal design, assistive technologies associated with seating, transportation, communication, and recreation. Integration of engineering design principles in a rehabilitation design project.
Description: Underlying physics, instrumentation, and signal analysis of biomedical and biological imaging modalities. MRI, X-ray, CT, ultrasound, nuclear medicine, and the human visual system. Energy-tissue interactions. Resolution, point spread function, contrast, diffraction, comparisons. Information content in images for biological systems.
Requires the evaluation of current primary literature in the field.
Description: Introduction to all types of bio-materials, metals, ceramics, polymers, and natural materials. Characterization of biomaterials, mechanical and physical properties, cell-biomaterials interactions, degradation, and host reaction to biomaterials. FDA testing and applications of biomaterials, implants, tissue engineering scaffolds, artificial organs, drug delivery, and adhesives.
Prerequisites: BSEN 416/816 or equivalent
Uses case studies to demonstrate clinical implementation of engineered tissues.
Description: Introduction to engineering biological substitutes that can restore, maintain or improve organ function in therapy of diseases. Engineering methods and principles to design tissues and organs, cell and tissue biology, tissue growth and development, biomaterial scaffolds, growth factor and drug delivery, scaffold-cell interactions, and bioreactors.
Prerequisites: Permission.
Description: Introduction to pollution prevention (P2) and waste minimization methods. Practical applications to small businesses and industries. Legislative and historical development of P2 systems analysis, waste estimation, P2 methods, P2 economics, and sources of P2 information.
Prerequisites: Senior standing.
Description: Characterization of wastes from animal production. Specification and design of collection, transport, storage, treatment, and land application systems. Air and water pollution, regulatory and management aspects.
Description: Engineering processes for biomass conversion and bioenergy production. Topics include biomass chemistry, conversion reactions, current and emerging bioenergy technologies, feedstock logistics, life cycle assessment. Analysis of primary research literature required for graduate credit.
Description: Engineering topics related to processing of biological materials into valuable products. Enzyme kinetics, microbial kinetics, application of enzymes in industrial processes, bioreactor design, equipment scale-up, gas transfer in reactors and bioseparations.
Description: Application of heat, mass, and moment transport in analysis and design of unit operations for biological and agricultural materials. Evaporation, drying, distillation, extraction, leaching, thermal processing, membrane separation, centrifugation, and filtration.
This course is a prerequisite for: BSEN 935
Description: Analytical and design consideration of evapotranspiration, soil moisture, and water movement as related to irrigation and drainage systems; analysis and design of components of irrigation and drainage systems including water supplies, pumping plants, sprinkler systems, and center pivots.
Description: Analysis and design of instrumentation and controls for agricultural, biological, and biomedical applications. Theory of basic sensors and transducers, analog and digital electrical control circuits, and the interfacing of computers with instruments and controls. LabVIEW Programming. Emphasis on signal analysis and interpretation for improving system performance.
Prerequisites: CHEM 109A and 109L and CHEM 110A and 110L, or CHEM 105A and 105L and CHEM 106A and 106L; Junior or Senior Standing.
Offered even-numbered calendar years.
Description: Physical, chemical and biological processes that occur in wetlands; the hydrology and soils of wetland systems; organisms occurring in wetlands and their ecology wetland creation, delineation, management and ecotoxicology.
Prerequisites: Professional admission into AGEN or BSEN; and permission.
Description: Definition, scope, analysis, and synthesis of a comprehensive design problem within the areas of emphasis in the Department of Biological Systems Engineering. Identification of a client's engineering problem to solve, and development of objectives and anticipated results.
Offered spring semester of even-numbered calendar years.
Description: Interaction between earth's climate and the hydrologic cycle. Energy and water fluxes at the land-atmosphere interface. Atmospheric moisture transport, precipitation, evaporation, snowmelt, and runoff. Impacts of climate variability and change on the hydrologic cycle.
Prerequisites: BSEN/AGEN 470
Description: Definition, scope, analysis, and synthesis of a comprehensive engineering problem in an engineering area of emphasis within the Department of Biological Systems Engineering. Design activity using the team approach to develop a solution.
Prerequisites: Permission
Description: Subject matter in emerging areas of Biological Systems Engineering not covered in other courses within the curriculum. Topics, activities, and delivery methods vary.
Prerequisites: Permission
Topics vary.
Description: Investigation and written report on engineering problems not covered in sufficient depth through existing courses.
Prerequisites: Senior or junior standing, admission to the University Honors Program.
Description: Independent project which meets the requirements of the University Honors Program, conducted under the guidance of a faculty member in the Department of Biological Systems Engineering. The project should contribute to the advancement of knowledge in the field. Written thesis and formal presentation required.