Electrical and Computer Engineering (ECEN)
Prerequisites: Senior standing in engineering.
Description: Applications of analog and digital devices to electronic instrumentation. Includes transducers, instrumentation amplifiers, mechanical and solid-state switches, data acquisition systems, phase-lock loops, and modulation techniques. Demonstrations with working circuits and systems.
Prerequisites: ECEN 305
Description: Economic evaluation, load forecasting, generation planning, transmission planning, production simulation, power plant reliability characteristics, and generation system reliability.
Prerequisites: ECEN 306.
Laboratory experiments.
Description: Applied electromagnetics: Transmission lines in digital electronics and communication. The quasistatic electric and magnetic fields: electric and magnetic circuits and electromechanical energy conversion. Guided waves: rectangular and cylindrical metallic waveguides and optical fibers. Radiation and antennas: line and aperture antennas and arrays.
Prerequisites: ECEN 305
Description: Probability space, random vectors, multivariate distributions, moment generating functions, conditional expectations, discrete and continuous-time random processes, random process characterization and representation, linear systems with random inputs.
Prerequisites: ECEN 424/824 (UNO ECEN 4240/8240)
Description: Topics covering the spatial and spectral analysis of digital image processing systems, the design of multi-dimensional digital filters and systems, and advanced theories and technologies in digital image processing systems.
Prerequisites: PHYS 212/(UNO) PHYS 2120.
Description: Survey of fundamentals and applications of devices used for memory, logic, and display. Magnetic, superconductive, semiconductive, and dielectric materials.
Prerequisites: Senior or graduate standing.
Description: Physics of plasmas and gas discharges developed. Includes basic collisional theory, the Boltzman equation and the concept of electron energy distributions. Results are related to specific gas discharge systems used in semiconductor processing, such as sputtering, etching, and deposition systems.
Prerequisites: PHYS 213/(UNO) PHYS 2130.
Description: Introduction to semiconductor fundamentals, charge carrier concentration and carrier transport, energy bands, and recombination. PN junctions, static and dynamic, and special PN junction diode devices.
Description: Introduction to structural, thermal, electrical, and magnetic properties of solids, based on concepts of atomic structure, chemical bonding in molecules, and electron states in solids. Principles underlying molecular design of materials and solid-state devices.
Prerequisites: Senior standing.
Description: Engineering principles of both the mechanical/aero dynamical and electrical components and systems, along with economic and environmental considerations for citing and public policy, to appropriately cover the relevant topics associated with all scales of wind energy implementations.
Description: Discussion of different microprocessor hardware and software systems designs including; microprocessor bus interfacing, memory systems, peripheral design and interfacing, interrupts, Direct Memory Access, and other hardware related topics. Software includes system code, firmware generation, and designing device drivers. Design, build, program, and show successful operation of a microprocessor board with memory, I/O and other related peripheral systems.
The prerequisite is different from the syllabus.
Description: Microcontroller architecture: design, programming, and interfacing for embedded systems. Including advanced RISC based microcontroller architecture and design, standard asynchronous and synchronous serial communications, I2C, SPI, USB, and related board design, development, and fabrication with surface mount technology. Design, build, program and show successful operation of a single microcontroller board with a specific application.
Description: Provides a solid background in electric machine analysis, covering fundamental concepts, techniques, and methods for analysis and design. Discussion of transformers and presentation of some new systems and applications.
This course is a prerequisite for: ECEN 932
Prerequisites: ECEN 435/835
Description: Parallel and distributed processing concepts, principles, techniques, and machines.
Description: Introduction to the basics of computer architectural details under the context of computer system programming. Topics include representing and manipulating information, machine level representation of programs, processor architecture and pipelining, compiling and linking, optimizing program performance from the system level, memory hierarchy, dynamic memory allocation and exceptional control flow. Linux system programming tool chain will also be introduced.
Prerequisites: MATH 221/(UNO) MATH 2350.
Description: Applications of partial differential equations, matrices, vector analysis, complex variables, and infinite series to problems in electrical engineering.
Prerequisites: ECEN 304
Description: Classical (transfer function) and modern (state variable) control techniques. Both time domain and frequency domain techniques are studied. Traditional proportional, lead, lag, and PID compensators are examined, as well as state variable feedback.
Description: Principles of engineering economy including time value of money, net present value and internal rate of return. Use of influence diagram and ecision tree to structure and analyze decision situations under uncertainty including use of stochastic dominance, value of information, and utility theory. Fundamentals of two-person matrix games including Nash equilibrium.
Prerequisites: Computer programming language and ECEN 305 or MECH 321 or STAT 380/(UNO) STAT 3800 or equivalent
Description: Examination of how information is organized in biological sequences such as DNA and proteins and computational techniques which make use of this structure. Various biochemical processes that involve these sequences are studied to understand how these processes affect the structure of these sequences. In the process bioinformatics algorithms, tools, and techniques which are used to explore genomic and amino acid sequences are also introduced.
Prerequisites: ECEN 310
Description: The concepts, principles, and methodology at all levels of digital VLSI system design and focused on gate-level VLSI implementation.
Prerequisites: ECEN 310
Description: The concepts, simulation techniques and methodology in computer-aided digital design at system and logic levels.
Prerequisites: By permission.
Basic knowledge of probability and statistics (e.g. ECEN 305 or STAT 380) and basic programming skills are recommended. May also be taught as a distance course for the Omaha campus.
Description: Provides the required biology primer and covers functional genomics, transcriptomics, differential expression, clustering, classification, prediction, biomarker discovery, pathway analysis and network based approaches to high throughput biological data analysis. Includes the development of databases, algorithms, web-based and other tools regarding management and analysis of life science data. Areas of study include DNA, RNA, and protein sequence analysis, functional genomics and proteomics, 3D macromolecule structure prediction, and systems/network approach.
Prerequisites: ECEN 338
Description: Characteristics and generating units. Control of generation, economic dispatch, transmission losses, unit commitment, generation with limited supply, hydrothermal coordination, and interchange evaluation and power pool.
Prerequisites: Prior programming experience
Description: Labview as a programming language and for applications to acquire and analyze data, to access the network, control lab instruments, and for video and sound applications.
Prerequisites: ECEN 305
Description: Introduction to the concepts of Information Theory and Redundancy removal. Simulation of various data compression schemes such as Delta Modulation, Differential Pulse Code Modulation, Transform Coding and Runlength Coding.
Prerequisites: ECEN 362; ECEN 461/861 or parallel.
Description: Standard telecommunications protocols, architecture of long distance integrated data networks, local area networks, wide area networks, radio and satellite networks. Network management, internetworking, system modeling and performance analysis.
Prerequisites: ECEN 361
Description: Analysis and design of analog integrated circuits both bipolar and MOS. Basic circuit elements such as differential pairs, current sources, active loads, output drivers used in the design of more complex analog integrated circuits.
This course is a prerequisite for: ECEN 913
Description: Introduction to VLSI design techniques for analog and digital circuits. Fabrication technology and device modelling. Design rules for integrated circuit layout. LSI design options with emphasis on the standard cell approach of digital and analog circuits. Lab experiments, computer simulation and layout exercises.
Prerequisites: ECEN 325
Description: High-speed access control protocols, routing protocols, traffic management, and network topologies. Giga-bit Ethernet, ATM, and TCP/IP. Performance modeling and simulation techniques.
Prerequisites: ECEN 304 or graduate standing
Description: Introduces fundamental principles and theory for computer vision, image understanding, and pattern recognition, perception, and signal processing. Specific attention given to analysis of the geometric properties and appearance of objects in images, such as region size, connectedness, topology, color, and texture.
Prerequisites: ECEN 325
Description: Concepts on mobile and personal communications. Modulation techniques for mobile radio, equalization, diversity, channel coding, and speech coding.
Prerequisites: ECEN 325
Description: The fundamental concepts of satellite communications. Orbits, launching satellites, modulation and multiplexing, multiple access, earth stations, coding, interference and special problems in satellite communications.
Description: The fundamental concepts of wireless communications. Basic communications concepts such as multiple access and spectrum. Propagation, radio standards and internet working. Current issues in wireless communications.
Description: Designed to provide a solid grasp of the methods of machine learning (ML) and how to build powerful ML models for discovering statistical regularities from both structured and unstructured data. Offers an introduction to Deep Learning for Computer Vision and Natural Language Processing.
Prerequisites: ECEN 461/861
Description: Fundamentals of lightwave communication in optical fiber waveguides, physical description of fiber optic systems. Properties of the optical fiber and fiber components. Electro-optic devices: light sources and modulators, detectors and amplifiers; optical transmitter and receiver systems. Fiber optic link design and specification; fiber optic networks.
This course is a prerequisite for: ECEN 979
Prerequisites: PHYS 213/(UNO) PHYS 2130.
Description: Physics of electronic transition production stimulated emission of radiation. Threshold conditions for laser oscillation. Types of lasers and their applications in engineering.
Prerequisites: ECEN 328
Description: Fundamental theory of antennas and radio propagation for wireless communications. Basic antenna characteristics and various antennas and antenna arrays. Basic propagation mechanisms and various channel models, such as Friis free space model, Hata model, lognormal distribution, and multipath model. Includes practical antenna design for high radio frequency (RF) with modeling software tools such as Numerical Electromagnetic Code (NEC) and Advanced Design System (ADS). Design projects will be assigned as the main part of course.
Prerequisites: ECEN 325
Description: Network security and cryptographic protocols. Classical encryption techniques, block ciphers and stream cyphers, public-key cryptography, authentications digital signatures, key management and distributions, network vulnerabilities, transport-level security, IP security.
Prerequisites: ECEN 461/861 (UNO ECEN 4610/8616)
Description: Introduction to the theory of spread spectrum communications: direct sequence, frequency and time hopping techniques. Topics include properties of pseudo-random binary sequences, low-probability-of-intercept (LPI) and anti-jamming (AJ) methods, performance of spread spectrum systems, applications of spread spectrum techniques in radio frequency and optical code-division multiple access (CDMA) systems.
Prerequisites: ECEN 306
Description: Introduction to the use of electromagnetic radiation for performing optical measurements in engineering applications. Basic electromagnetic theory and light interaction with matter are covered with corresponding laboratory experiments conducted.
This course is a prerequisite for: ECEN 986
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Description: Concepts and principles of data and network security. Focuses on practical aspects and application of crypto systems in security protocols for networks such as the Internet. Topics include: applications of cryptography and cryptosystems for digital signatures, authentication, network security protocols for wired and wireless networks, cyberattacks and countermeasures, and security in modern computing platforms.
Prerequisites: ECEN 325
Description: A comprehensive overview on the recent advances in wireless network and system security. Covers security issues and solutions in emerging wireless access networks and systems as well as multihop wireless networks.
Prerequisites: Senior standing.
Description: Special topics in the emerging areas of electrical, computer, and electronics engineering which may not be covered in other courses in the electrical and computer engineering curriculum.
Prerequisites: Senior standing
Requires an ECE departmentally approved proposal.
Description: Special topic in emerging areas of electrical and computer engineering which may not be covered in other courses in the electrical and computer engineering curriculum.
Prerequisites: Permission
Description: Research in a selected area of electrical engineering under the supervision and guidance of an Electrical and Computer Engineering faculty member.
Prerequisites: Admission to masters degree program and permission of major adviser.
Description: Masters thesis work.
Prerequisites: ECEN 410/(UNO) ECEN 4100 or ECEN 810/(UNO) ECEN 8106; and ECEN 464/(UNO) ECEN 4640 or ECEN 864/(UNO) ECEN 8646; or permission.
Description: Fundamentals of error correction and detection in digital communication and storage systems. Linear and algebraic block codes; Hamming, BCH and Reed-Solomon codes; algebraic decoding techniques; structure and performance of convolutional codes, turbo codes, and trellis coded modulation; MAP, Viterbi, and sequential decoding techniques.
Prerequisites: ECEN 869/(UNO) ECEN 8696 and permission
Description: Advanced current mirrors and op-amps. Comparators and sample/hold (S/H) circuits. Band-gap reference circuits. Trans-linear circuits and analog multipliers. Voltage controlled oscillators. Operational trans-conductance amplifiers (OTA's). Switched capacitor circuits. Data converters. Non-linearity, mismatch, and short-channel effects. Continuous time domain integrated filters. Current conveyors. Phase locked loops. Analog CAD.
Prerequisites: ECEN 410/(UNO) ECEN 4100 or ECEN 810/(UNO) ECEN 8106; and ECEN 463/(UNO) ECEN 4630 or ECEN 863/(UNO) 8636; and permission
Description: Adaptive filtering algorithms, frequency and transform domain adaptive filters, and simulation and critical evaluation of adaptive signal processing for real world applications.
Prerequisites: ECEN 424/824/(UNO) ECEN 4240/8246; ECEN 476/876/(UNO) ECEN 4760/8760; and ECEN 883/(UNO) ECEN 8830
Description: Statistical signal processing and applications for wireless communications: the characteristics of random signals; optimum linear filters; statistical parameter estimation using maximum likelihood (ML) and minimum mean-square error (MMSE) methods; adaptive signal processing using least-mean-square (LMS) and recursive least-square (RLS) approaches; Kalman filtering; and eigenanalysis.
Prerequisites: ECEN 428/(UNO) ECEN 4280 or ECEN 828/(UNO) ECEN 8286; and ECEN 426/(UNO) ECEN 4260 or ECEN 836/(UNO) ECEN 8366.
Description: Analysis and design of power electronic circuits and their applications, including: snubber circuits, resonant converters and soft switching techniques, pulse-width modulation techniques, control of power electronic circuits, power electronics and control for electric machines and wind energy systems, flexible AC-transmission system (FACTS) devices, and high-voltage DC (HVDC) transmission.
Prerequisites: MATH 208/(UNO) MATH 1970, MATH 221/(UNO) MATH 2350, MATH 314/(UNO) MATH 2050, and good skills using MATLAB
Description: Computational intelligence paradigms and their applications, including: artificial neural networks, fuzzy logic systems, swarm intelligence, evolutionary computation (e.g., genetic algorithms), machine learning (e.g., supervised learning, unsupervised learning, and reinforcement learning), neurocontrol and adaptive critic designs, and applications of computational intelligence for system identification, state estimation, time series prediction, signal processing, adaptive control, optimization, diagnostics, prognostics, etc.
Prerequisites: ECEN 810/(UNO) ECEN 8106
Description: Techniques for optimally extracting information about the past, present, or future status of a dynamic system from noise-corrupted measurements on that system.
Prerequisites: ECEN 806/(UNO) ECEN 8066
Description: Power system matrices, sparsity techniques, network equivalents, contingency analysis, power flow optimization, state estimation, and power system restructuring examined via computer methods.
Prerequisites: ECEN 864/(UNO) ECEN 8646 and permission
Description: Principles of wireless communications, including: description of the wireless channel characteristics; ultimate performance limits of wireless systems; performance analysis of digital modulation techniques over wireless channels; diversity techniques; adaptive modulation; multiple-antenna communications; multi-carrier modulation; and multi-user wireless communications.
Prerequisites: ECEN 315/(UNO) ECEN 3150 or equivalent
Description: Gallium arsenide and silicon devices. Device properties based on structure and physical properties of the materials.
Prerequisites: ECEN 867/(UNO) ECEN 8676 or ECEN 868/(UNO) ECEN 8686
Description: Application of Maxwell's Equations to the analysis of waveguides, resonant cavities, filters and other passive microwave devices.
Prerequisites: ECEN 967/(UNO) ECEN 9670
Description: Quantitative development of the fundamentals of the quantum-mechanical theory of electrons in solids.
The content of the course will be updated annually based on new scientific findings.
Description: Topics in nanotechnology as defined by the National nanotechnology Initiative, with emphasis on topics related to electrical engineering.
Prerequisites: ECEN 967/(UNO) ECEN 9670 or equivalent
Description: Quantum mechanical description of the optical properties of solids (complex refractive index and its dispersion, effects of electric and magnetic fields, temperature, stress; additional special topics as desired).
Prerequisites: ECEN 461/861/(UNO) ECEN 4630/8636; ECEN 476/876/(UNO) ECEN 4760/8766
Description: Theory of space-time (ST) wireless communication systems. Spatial diversity, smart antenna systems, MIMO capacity of multi-antenna fading channels, space-time signaling, space-time receivers, and interference mitigation. Overview of more advanced topics such as MIMO-OFDM. Current trends in research and in the industry.
Prerequisites: ECEN 479/879 (UNO ECEN 4790/8796)
Description: Linear and non-linear propagations in optical fibers. Topics include fiber non-linearity, fundamentals of optical amplifiers, semiconductor and fiber amplifiers, soliton communications. Applications include high capacity and long distance transmissions, all-optical networks.
Prerequisites: ECEN 886/(UNO) ECEN 8866
Description: Modern phenomena associated with optoelectronics. Electro-optical effect such as Pockel effect, Kerr effect, and nonlinear optical phenomena. Material and devices used in modern communications, femtosecond lasers, and optical computer systems.
Prerequisites: Permission
Description: Selected topic under the direction and guidance of a faculty member.
Prerequisites: Permission and graduate standing.
Description: Supervised non-thesis research.
Prerequisites: Permission
Description: Independent study in electrical engineering.
Prerequisites: Permission
Description: Supervised non-thesis research.
Prerequisites: Admission to doctoral degree program and permission of supervisory committee chair.
Description: Dissertation research.