MECHANICAL ENGINEERING

Description
Mechanical engineering is a broad field of study that significantly impacts many technologies, including those that expand our energy resources and improve medical care. Mechanical engineers are concerned with all forms of energy conversion and transmission; the flow of fluids and heat; the development, design, manufacturing, and operation of machinery and equipment; material structure and properties; solid and applied mechanics; and transportation processes. The course of study is designed to give the student fundamental preparation to enter the fields of research, design, operation, production, sales, or management.

The mechanical engineering curriculum is structured so that students are well prepared in the fundamental areas of solid mechanics, thermal-fluid sciences, systems and design engineering, and materials engineering. Students can develop an emphasis area of study by concentrating elective courses in specific interdisciplinary areas such as aerospace engineering, automotive engineering, robotics, biomedical engineering, computational methods, manufacturing, nanotechnology and others depending upon the technical courses available and the interest of the student.

Mission and Objectives
Mission Statement
The mission of the Department of Mechanical and Materials Engineering at the University of Nebraska is to impact society locally and globally through our educational programs, research, and service, developing knowledge and sharing our expertise in the best traditions of land-grant universities. We strive for excellence in teaching and learning at both the undergraduate and graduate levels, seek to develop novel educational opportunities, grow our public and private support for research and education, and expand our scholarship, outreach and service.

Program Educational Objectives
Within a few years of graduation, our mechanical engineering graduates are expected to:

1. have started successful careers based on their education or have completed a professional degree or a graduate degree in engineering or related field;
2. have begun life-long learning and development in order to remain current in their knowledge and skills and to advance in their careers; and
3. have established a record of professionalism, leadership, respect and integrity in working to serve humanity and to use resources responsibly.

Student Outcomes
The educational program leading to the BS in mechanical engineering ensures that students attain the following outcomes:

• an ability to apply knowledge of mathematics, science, and engineering;
• an ability to design and conduct experiments, as well as to analyze and interpret data;
• an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability;

• an ability to function on multidisciplinary teams;
• an ability to identify, formulate, and solve engineering problems;
• an understanding of professional and ethical responsibility;
• an ability to communicate effectively;
• the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context;
• a recognition of the need for, and an ability to engage in, life-long learning;
• a knowledge of contemporary issues;
• an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Major Department Admission
Admittance to Degree Program
Students are expected to meet minimum college entrance requirements. After being admitted to the college as pre-mechanical engineering students, students wishing to pursue a degree in mechanical engineering must further be admitted to the degree program. Students who have completed 43 credit hours applicable to their mechanical engineering degree are considered for formal admission to the mechanical engineering degree program. Typically, this occurs the semester the student is enrolled in MECH 200 Engineering Thermodynamics or MATL 360 Elements of Materials Science. Those exceeding 61 credit hours must receive formal admission to the mechanical engineering degree program if they are to continue to take mechanical engineering courses. Transfer students must have at least 12 credit hours of course work from the University of Nebraska–Lincoln on record before an application will be considered.

The requirements for admission to the degree program are a major GPA of 2.7 (that is, not counting elective courses), completion of MECH 223 Engineering Statics, no more than four withdrawals and no more than three repeated courses. Those who are not admitted to the degree program the first time are advised of the outcome and are automatically reviewed again at the end of that semester. If after two reviews a student is not admitted to the degree program, the student is advised of other majors, in engineering or elsewhere, in which they may be likely to find success.

Other
Hands-on Opportunities
One major focus of the Department is to provide students with many hands-on opportunities both within the curriculum (through formal laboratory courses) and through extracurricular activities. Brief descriptions of some of the laboratories in the department are given below.

The Materials Laboratory is designed to study the development of microstructures during processing, and to correlate the properties of materials with the observed structures. Undergraduates utilize arc melting facilities for solidification processing and alloy formation, rolling mills for deformation processing, and a variety of furnaces for thermal treatments. Characterization facilities include x-ray diffractometry and optical microscopy, while property measurements are completed using hardness testing (including microhardness), tensile testing, and impact testing facilities. Other facilities associated with the materials laboratory include rapid solidification processing facilities and electron microscopy facilities.
The Measurements Laboratory is associated with the required MECH 380 Mechanical Engineering Measurements course which includes two hours of lecture and two hours of laboratory work each week. The course covers the fundamentals of mechanical engineering measurements including data analysis (statistics, graphing, spectral analysis), signal conditioning, data readout, and the measurement of length/displacement, rate of rotation, stress/strain, temperature, pressure, fluid velocity, fluid flow rate, vibration/acceleration, and sound. The MECH 380 Lab has four workbenches. Each workbench has a set of basic measurement equipment including a digital oscilloscope, an electronic counter, a digital multimeter, a DC power supply, a function generator, and a computer-based data acquisition system consisting of a personal computer with data acquisition software and interfaced analog-to-digital converter and digital counter cards. In addition, on a week-to-week basis, specialized equipment is brought out of the cabinets and set up for each of the nine (some one week, some two week) labs.

The Kinematics and Machine Design Laboratory is a teaching laboratory for undergraduate students. The laboratory consists of equipment and instruments for conducting experiments in kinematics and machine design. One piece of major equipment is the rapid prototyping machine, which accepts design specifications from a computer and forms a prototype of the design using plastic fused deposition. This machine provides the student with experience in design integration from concept to product. Accessories in this laboratory include desktop computers, a wide-carriage printer, and other instruments. Kawasaki also donated a retired robot that is now utilized in this laboratory.

The Thermal Fluids Laboratory involves design, execution and evaluation of physical experiments in the areas of thermodynamics, fluid mechanics, and heat transfer. There are three major, heavily-instrumented experiments:

1. a two stage air-compressor with intercooling,
2. a versatile air conditioning unit, and
3. a Ford gasoline engine with a Superflow water brake dynamometer, supported with a data acquisition system.

The course involves design, execution and evaluation of physical experiments in the areas of thermodynamics, fluid mechanics, and heat transfer. In addition, the facilities include “table top” instrumentation for viscosity measurement, measurement of pressure distribution on an airfoil, flow visualization and head loss across a valve on which students conduct experiments.

The Mechatronics Laboratory is well-equipped for teaching courses in mechatronics, robotics, and controls. It is used primarily for MECH 457 Mechatronic Systems Design and MECH 450 Mechanical Engineering Control Systems Design, but is also used for other courses, and by both undergraduate and graduate students working on research projects. The laboratory contains desktop computers, modular robots, digital oscilloscopes, function generators, computer controllers, soldering systems, and many other accessories.

The Department also has computational facilities available to students. The computer lab has a suite of personal computers with a full complement of computing resources available to students.

Research Laboratories. These laboratories, extensions of those described above, are equipped for research in the fields of fluid mechanics, heat transfer, thermodynamics, turbulence, flow visualization, fluid mechanics, measurements, turbomachinery and engine research, combustion, materials, mechanical design, dynamics, computational, solid and applied mechanics, biomedical engineering, and controls. Many of our undergraduate students gain valuable experience working on research projects under the guidance of professors. These are funded by research grants or the University’s UCARE program.

Some of the extracurricular opportunities for students to gain hands-on engineering experience include SAE Baja, SAE Formula (both through Husker Motorsports), NASA microgravity, AIAA competitions, and others.

College Requirements

College Admission

College Entrance Requirements

Students must have high school credit for (one unit is equal to one high school year):

1. 4 units of mathematics: 2 of algebra, 1 of geometry, 1 of precalculus and trigonometry.
2. 4 units of English.
3. 3 units of natural science that must include 1 unit of physics and 1 unit of chemistry (chemistry requirement waived for students in construction management).
4. 2 units of a single foreign language.
5. 3 units of social studies.
6. Students having a composite ACT score of 28 or greater (or equivalent SAT score) will be admitted to the College of Engineering even if they lack any one of the following: trigonometry, chemistry, or physics.
7. Students having an ACT score of 19 or less in English (or equivalent SAT score) must take ENGL 150 Writing and Inquiry or ENGL 151 Writing and Argument.

A total of 16 units is required for admission.

Students must have an ACT (enhanced) score of 24 or greater (or equivalent SAT). Students who lack entrance requirements may be admitted based on ACT scores, high school rank and credits, or may be admitted to pre-engineering status in the Exploratory and Pre-Professional Advising Center. Pre-engineering students are advised within the College of Engineering.

Students for whom English is not their language of nurture must meet the minimum English proficiency requirements of the University.

Students who lack entrance units may complete precollege training by Independent Study through the UNL Office of On-line and Distance Education, in summer courses, or as a part of their first or second semester course loads while in the Exploratory and Pre-Professional Advising Center or other Colleges at UNL.

Students should consult their advisor, their department chair, or Engineering Student Services if they have questions on current policies.

Other Admission Requirements

Students who transfer to the University of Nebraska–Lincoln from other accredited colleges or universities and wish to be admitted to the College of Engineering (COE) must meet COE freshman entrance requirements and have a minimum cumulative GPA of 2.5 for Nebraska residents or 3.0 for non-residents, and be calculus-ready. Students not meeting either of these requirements must enroll in the Explore Center or another UNL college until they meet COE admission requirements.
The COE accepts courses for transfer for which a C or better grade was received. Although UNL accepts D grades from the University of Nebraska at Kearney and at Omaha, not all majors in the COE accept such low grades. Students must conform to the requirements of their intended major and, in any case, are strongly encouraged to repeat courses with a grade of C- or less.

All transfer students must adopt the curricular requirements of the undergraduate catalog current at the time of transfer to the COE—not that in use when they entered UNL. Upon admission to UNL, students wishing to pursue degree programs in the COE will be classified and subject to the policies defined in the subsequent section.

College Degree Requirements

Grade Rules

Grade Appeals

In the event of a dispute involving any college policies or grades, the student should appeal to his/her instructor, and appropriate department chair or school director (in that order). If a satisfactory solution is not achieved, the student may appeal his/her case through the College Academic Appeals Committee on his/her campus.

Catalog Rule

Students must fulfill the requirements stated in the catalog for the academic year in which they are first admitted to UNL. In consultation with advisors, a student may choose to follow a subsequent catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at UNL in the College of Engineering. Students must complete all degree requirements from a single catalog year. The catalog which a student follows for degree requirements may not be more than 10 years old at the time of graduation.

Learning Outcomes

Majors in mechanical engineering will be able to:

1. Apply knowledge of mathematics, science, and engineering. (a)
2. Design and conduct experiments, as well as to analyze and interpret data. (b)
3. Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. (c)
4. Function on multidisciplinary teams. (d)
5. Identify, formulate, and solve engineering problems. (e)
6. Understand professional and ethical responsibility. (f)
7. Communicate effectively. (g)
8. Understand the impact of engineering solutions in a global, economic, environmental, and societal context. (h)
9. Recognize the need for, and an ability to engage in, life-long learning. (i)
10. Have knowledge of contemporary issues. (j)
11. Use the techniques, skills, and modern engineering tools necessary for engineering practice. (k)

Major Requirements

Requirements for the Degree (Lincoln campus)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>CHEM 109</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGR 10</td>
<td>Freshman Engineering Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ENGR 100</td>
<td>Interpersonal Skills for Engineering Leaders</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 106</td>
<td>Calculus I</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>ACE Electives</td>
<td>Choose courses from not yet satisfied ACE outcomes 5, 6, 7, or 9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Credit Hours Subtotal</td>
<td>15</td>
</tr>
<tr>
<td>Second Semester</td>
<td>CHEM 110</td>
<td>General Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CSCE 155N</td>
<td>Computer Science I: Engineering and Science Focus</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 107</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 211</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 221</td>
<td>General Physics Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Credit Hours Subtotal</td>
<td>16</td>
</tr>
<tr>
<td>Third Semester</td>
<td>BSEN 206 / CONE 206</td>
<td>Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGR 20</td>
<td>Sophomore Engineering Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATH 208</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MECH 130</td>
<td>Introduction to CAD</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH 223</td>
<td>Engineering Statics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 212</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Credit Hours Subtotal</td>
<td>17</td>
</tr>
<tr>
<td>Fourth Semester</td>
<td>MATH 221</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATL 360</td>
<td>Elements of Materials Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MECH 200</td>
<td>Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH 325</td>
<td>Mechanics of Elastic Bodies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH 373</td>
<td>Engineering Dynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Credit Hours Subtotal</td>
<td>16</td>
</tr>
<tr>
<td>Fifth Semester</td>
<td>ECEN 211</td>
<td>Elements of Electrical Engineering I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECEN 231</td>
<td>Electrical Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>JGEN 200</td>
<td>Technical Communication I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 314</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH 300</td>
<td>Thermal Systems and Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH 342</td>
<td>Kinematics and Dynamics of Machinery</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Credit Hours Subtotal</td>
<td>16</td>
</tr>
<tr>
<td>Sixth Semester</td>
<td>MECH 321</td>
<td>Engineering Statistics and Data Analysis or STAT 380 / MATH 380</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH 310</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH 343</td>
<td>Elements of Machine Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH 350</td>
<td>Introduction to Dynamics and Control of Engineering Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH 380</td>
<td>Mechanical Engineering Measurements</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Credit Hours Subtotal</td>
<td>15</td>
</tr>
<tr>
<td>Seventh Semester</td>
<td>MECH 370</td>
<td>Manufacturing Methods and Processes</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH 420</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
</tbody>
</table>
Eighth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 400</td>
<td>Professional Ethics and Social Responsibilities</td>
<td>1</td>
</tr>
<tr>
<td>MECH 447</td>
<td>Mechanical Engineering Design II</td>
<td>2</td>
</tr>
<tr>
<td>MECH 487</td>
<td>Thermal Fluids Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MECH 447</td>
<td>Mechanical Engineering Design Elective</td>
<td>3</td>
</tr>
<tr>
<td>MECH 487</td>
<td>Mechanical Engineering Design Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 17

Senior Elective

Senior electives may be either another mechanical engineering technical elective, another mechanical engineering design elective, or, with prior written approval of your advisor, a 300 or higher level engineering, science, or math course.

ACE Electives

Choose courses from not yet satisfied ACE outcomes 5, 6, 7, or 9

Credit Hours Subtotal: 17

Total Credit Hours

129

1. CHEM 111 Chemistry for Engineering and Technology may be substituted for the CHEM 109 General Chemistry I/CHEM 110 General Chemistry II sequence.

2. Or, instead, COMM 210 Communicating in Small Groups, COMM 283 Interpersonal Communication, or COMM 286 Business and Professional Communication may be taken in the Third Semester.

3. Or, instead, PHYS 222 General Physics Laboratory II (1 cr) may be taken in the Third Semester.

4. The capstone design sequence must be taken in the order shown in the curriculum and should be taken in the last two semesters of the program (MECH 446 Mechanical Engineering Design I and MECH 447 Mechanical Engineering Design II).
MATL 465 Applied Physical Metallurgy and Design
Crosslisted with: MATL 865
Prerequisites: MATL 360 or equivalent.
Description: Principles of alloying; alloy selection; modification of the physical properties of structural alloys by thermal, mechanical, and chemical treatment; solidification and joining phenomena.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MATL 466 Materials Selection for Mechanical Design
Crosslisted with: MATL 866
Prerequisites: MATL 360 and MECH 325; or permission.
Description: Rational selection procedure for the most suitable materials for each particular mechanical design. Introduction of materials selection charts and the concept of materials performance indices. Case studies in mechanical design, taking materials selections, shape and process into account. Projects on materials selection at the design concept and the design embodiment stages.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MATL 467 Principles of Powder Metallurgy
Crosslisted with: MATL 867
Prerequisites: MECH 200; MECH 325; MATL 360 or equivalent.
Description: Basic principles of powder metallurgy, with emphasis on methods of producing metal powders, determination of their characteristics; the mechanics of powder compaction; sintering methods and effects; and engineering applications.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MATL 468 Failure Analysis: Prevention and Control
Crosslisted with: MATL 868
Prerequisites: MECH 325; MATL 360 or equivalent.
Description: Metallurgical tools for analysis of failures; types and modes of failures; sources of design and manufacturing defects. Case histories utilized to illustrate modes of failures and principles and practices for analysis. Design concepts and remedial design emphasized with these case studies. Several projects involving case analyses and design by students included.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MATL 469 Physical Materials Systems
Crosslisted with: MATL 869
Prerequisites: PHYS 212 and MATL 360.
Description: Development of the principles controlling the formation of the structure of engineering materials. Phase diagrams, diffusion, interfaces and microstructures, solidification and diffusional transformation and diffusionless transformations.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MATL 470 Thermodynamics of Alloys
Crosslisted with: MATL 870
Prerequisites: MATL 360 and MECH 200, or equivalent; MATH 208 or parallel.
Description: Materials thermodynamics of closed systems, introduction to liquid and solid solution alloys, relationship to gas phase, application to binary systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MATL 471 Electron Microscopy of Materials
Crosslisted with: MATL 871
Prerequisites: PHYS 212.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MATL 472 Kinetics of Alloys
Crosslisted with: MATL 872
Prerequisites: MATL 360 or equivalent; MATH 221/MATH 821.
Description: Fundamentals of corrosion engineering, underlying principles, corrosion control, and materials selection and environmental control.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MATL 473 Corrosion
Crosslisted with: MATL 873
Prerequisites: CHEM 109 or equivalent.
Description: Fundamentals of corrosion engineering, underlying principles, corrosion control, and materials selection and environmental control.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MATL 474 Extractive Metallurgy
Crosslisted with: MATL 874
Prerequisites: MATL 360 and MECH 200 or equivalent.
Description: Fundamentals of corrosion engineering, underlying principles, corrosion control, and materials selection and environmental control.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
MECH 220 Statics
Prerequisites: MATH 106.
Description: Fundamental concepts, equilibrium of force systems, analysis of simple frames and trusses. Centroid and moments of inertia and friction.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 223 Engineering Statics
Prerequisites: MATH 107 (grade of C or better), PHYS 211 (grade of C or better)
Description: Action of forces on engineering structures and machines. Force systems, static equilibrium of frames and machines. Friction, center of gravity, moment of inertia, vector algebra.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL/SPR
Prerequisite for: AGEN 324, BSEN 324; CIVE 361; MATL 360; MECH 325H; MECH 373, MECH 373H

MECH 223H Honors: Engineering Statics
Prerequisites: Good standing in the University Honors Program or by invitation; MATH 107 and PHYS 211.
Description: Bodies in equilibrium. Vector algebra, equivalent force systems, distributed loads, and center of gravity. Analysis of trusses, frames, and machines. Friction, wedges, crews, and belts. Area moments of inertia.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 250 Mechanics I
Prerequisites: PHYS 211.
Notes: Parallel: MATH 208. For electrical engineering majors.
Description: Force actions in static coplanar systems with applications to engineering structures and machines. Resultants, moments, couples, equivalent force systems, vector algebra. Static equilibrium conditions and equations.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LEC

MECH 220H Honors: Engineering Thermodynamics
Prerequisites: Good standing in the University Honors Program or by invitation; PHYS 212; MECH 223.
Description: First and Second Laws of Thermodynamics, properties of gases and vapors. Sources of energy and its conversion to work. Honors students will be expected to study beyond the students in the normal sections and do a special project.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: AGEN 344, BSEN 344; MECH 300

MECH 300 Thermal Systems and Design
Prerequisites: MECH 200, CSCE 155N
Description: Applications of control-volume analysis (mass, energy, and momentum), both transient and steady; mixtures of gases and vapors; introduction to combustion; thermodynamic relations and establishment of data banks of thermal properties; applications of computer-aided engineering to processes and cycles; methodologies and case studies for thermal systems design; execution of small-scaled design projects.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL/SPR
Prerequisite for: MECH 446; MECH 487

MECH 310 Fluid Mechanics
Crosslisted with: MECH 310H
Prerequisites: MECH 373; MATH 221
Notes: Parallel: MECH 200, or BSEN 244 or by permission for non-ME students.
Description: Fluid statics, equations of continuity, momentum, and energy dimensional analysis and dynamic similarity. Applications to:flow meters; fluid pumps and turbines; viscous flow and lubrication; flow in closed conduits and open channels. Two-dimensional potential flow.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL/SPR
Prerequisite for: AGEN 325, BSEN 325; AGEN 344, BSEN 344; BSEN 425, CIVE 425; CIVE 352; MECH 446

MECH 310H Fluid Mechanics
Crosslisted with: MECH 310
Prerequisites: MECH 373; MATH 221
Notes: Parallel: MECH 200, or BSEN 244 or by permission for non-ME students.
Description: Fluid statics, equations of continuity, momentum, and energy dimensional analysis and dynamic similarity. Applications to:flow meters; fluid pumps and turbines; viscous flow and lubrication; flow in closed conduits and open channels. Two-dimensional potential flow.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL/SPR
Prerequisite for: AGEN 325, BSEN 325; AGEN 344, BSEN 344; BSEN 425, CIVE 425; CIVE 352; MECH 446

MECH 311 Fluid Mechanics Laboratory
Prerequisites: MECH/CIVE 310 or parallel.
Description: Fluid mechanics experiments and demonstrations. Conservation principles; determination of fluid properties, velocity, pressure, and flow measurements; pipe flow; open channel flow; and instrumentation techniques.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LAB

MECH 312 Fluid Mechanics Laboratory
Prerequisites: MECH/CIVE 310 or parallel.
Description: Fluid mechanics experiments and demonstrations. Conservation principles; determination of fluid properties, velocity, pressure, and flow measurements; pipe flow; open channel flow; and instrumentation techniques.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LAB

MECH 321 Engineering Statistics and Data Analysis
Prerequisites: MATH 208
Description: An applications-oriented course for formulating and solving engineering statistical problems. Includes Descriptive statistics, probability distributions, variability, sampling, confidence intervals, tests of significance, basics of statistical process control, and design of experiments.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: ABUS 341, MRKT 341; ACCT 308; BLAW 371; BLAW 371H; BLAW 372; ECEN 850, ECEN 450; ECON 311; FINA 361; MECH 343; MNGT 301; MRKT 350; SCMA 331; SCMA 350

MECH 322 Strength of Materials
Prerequisites: MECH 200 or 223.
Notes: For students in architecture and construction management.
Description: Stresses and strain analysis in elastic materials. Use of properties of materials in the analysis and design of welded and riveted connections, statically determinate and indeterminate flexure members, columns. Combined stresses, axial, eccentric and torsional loading. Observations of laboratory tests for axially loaded specimens. Introduction to shear and moment diagrams.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CIVE 334; CIVE 341; CIVE 378; MECH 343

MECH 324 Strength of Materials
Prerequisites: MECH 220 or 223.
Notes: For students in architecture and construction management.
Description: Stresses and strain analysis in elastic materials. Use of properties of materials in the analysis and design of welded and riveted connections, statically determinate and indeterminate flexure members, columns. Combined stresses, axial, eccentric and torsional loading. Observations of laboratory tests for axially loaded specimens. Introduction to shear and moment diagrams.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CIVE 334; CIVE 341; CIVE 378; MECH 343

MECH 325 Mechanics of Elastic Bodies
Prerequisites: Good standing in the University Honors Program or by invitation; MECH 223 or 223H; MATH 208.
Description: Concept of stress and strain considering axial, torsional, and bending forces. Shear and moments. Introduction to combined stresses and column theory.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CIVE 334, CIVE 341; CIVE 378; MECH 343

MECH 325H Honors: Mechanics of Elastic Bodies
Prerequisites: Good standing in the University Honors Program or by invitation; MECH 223 or 223H; MATH 208.
Description: Concept of stress and strain considering axial, torsional, and bending forces. Shear and moments. Introduction to combined stresses and column theory.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CIVE 334, CIVE 341; CIVE 378; MECH 343

MECH 330 Mechanical Engineering Analysis
Prerequisites: MATH 221; CSCE 155N, MECH 325 and 373; MECH 200.
Description: Conceptual modeling of mechanical engineering systems. Analytical exploration of engineering behavior of conceptual models. Case studies drawn from mechanical engineering problems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
MECH 342 Kinematics and Dynamics of Machinery
Prerequisites: MECH 130 and MECH 373
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: MECH 343

MECH 343 Elements of Machine Design
Prerequisites: MECH 325; BSEN 206; JGEN 200 or 300; MECH 342; MATL 360; MECH 321 or STAT 380 or parallel.
Description: Design of machine elements under different conditions of loading. Design work includes a project of broader scope (done primarily out of class) requiring a breadth of knowledge. Failure theories for static and dynamic loading of bolts, springs, bearings, and shafts.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL/SPR
Prerequisite for: MECH 446

MECH 350 Introduction to Dynamics and Control of Engineering Systems
Prerequisites: MECH 373; ECEN 211; CSCE 155N or AGEN/BSEN 212A; MATH 314 or parallel.
Description: Unified treatment of the dynamics and control of engineering systems. Emphasis on physical aspects, formulation of mathematical models, application of various mathematical methods, and interpretation of results in terms of the synthesis and analysis of real systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL/SPR
Prerequisite for: MECH 446

MECH 351 Mechanics II
Prerequisites: MECH 250.
Notes: For electrical engineering majors.
Description: Application of Newton’s laws to engineering problems involving coplanar kinematics and kinetics of particles. Work, energy, impulse, and momentum. Conservative systems. Periodic motion.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LEC

MECH 370 Manufacturing Methods and Processes
Prerequisites: MATL 360; and MECH 325.
Description: Introduction to traditional and modern manufacturing processes and methods to include: foundry; forming processes; welding; metal removal theory and practices; modern manufacturing systems and automation; and economics of process selection.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 373 Engineering Dynamics
Prerequisites: MECH 223, MATH 208.
Description: Force action related to displacement, velocity, and acceleration of rigid bodies. Kinematics of plane motion: displacement, velocity, and acceleration. Kinetics of translation and rotation; work, energy and power, impulse and momentum.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CIVE 310; CIVE 310H; MECH 310, MECH 310H; MECH 342; MECH 350

MECH 373H Honors: Engineering Dynamics
Prerequisites: Good standing in the University Honors Program or by invitation; MECH 223 or 223H; MATH 208.
Description: Motion of particles and rigid bodies under the action of forces and moments. Kinematics of plane motion: displacement, velocity, and acceleration. Kinetics of translation and rotation; work, energy and power, impulse, momentum and impact. Introduction to vibration analysis.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CIVE 310; CIVE 310H; MECH 310, MECH 310H; MECH 342; MECH 350

MECH 380 Mechanical Engineering Measurements
Prerequisites: ECEN 231; JGEN 200 or 300; MECH 321 or STAT 380 or parallel; MECH 350 and MECH 310, or parallel.
Description: Theory, statistics, applications and design of mechanical engineering experiments.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL/SPR
Prerequisite for: MECH 487

MECH 381 Elements of Computer-Aided Design
Prerequisites: MATH 221; MECH 130 or CSCE 155N or permission
Description: Principles and techniques currently used for the computer-aided design (CAD). Applications of interactive graphics devices for drafting, design, and analysis. Modelling and analogy of engineering systems. Elementary finite element, Bode, and numerical analyses. CAD case studies and term project.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 399 Undergraduate Research and Thesis
Prerequisites: Permission.
Description: Engineering design or laboratory investigation that an undergraduate is qualified to undertake.
Credit Hours: 1-5
Min credits per semester: 1
Max credits per semester: 5
Max credits per degree: 6
Format: IND
MECH 403 Internal Combustion Engines
Crosslisted with: MECH 803
Prerequisites: MECH 300 or equivalent.
Description: Basic cycle analysis and engine types, fundamental thermodynamics and operating characteristics of various engines are analyzed, combustion processes for spark and compression-ignition engines, fuels, testing procedures, and lubrication systems are evaluated. Emphasis on the thermodynamic evaluation of the performance and understanding the basic operation of various engine types.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 404 Theory of Combustion
Crosslisted with: MECH 804
Prerequisites: MECH 300 and MECH 420/MECH 820.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 405 Turbomachinery
Crosslisted with: MECH 805
Prerequisites: MECH 300 and MECH 310/CIVE 310
Description: Thermodynamic analysis and design of axial and radial flow turbines, compressors, and pumps. Fundamentals of the operating characteristics and performance parameters of turbomachines will be evaluated. Cavitation and blade element theory.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 406 Air Conditioning Systems Design
Crosslisted with: MECH 806
Prerequisites: MECH 300 or equivalent.
Description: Application of thermodynamic and fluid dynamic principles to the design of air conditioning systems. Comprehensive design project is an integral part of the course.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 407 Power Plant Systems Design
Crosslisted with: MECH 807
Prerequisites: MECH 300 or equivalent.
Description: Application of thermodynamic and fluid dynamic principles to the design of Power Plants. Comprehensive design project is an integral part of the course.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 408 Heat Exchanger Design
Crosslisted with: MECH 808
Prerequisites: MECH 300 or equivalent.
Description: Design methodology for various heat exchangers employed in mechanical engineering. Introduction to computer-aided design as applied to heat exchangers. Practical exercises in actual design tasks.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 413 Aerodynamics
Crosslisted with: MECH 813
Prerequisites: MECH 200 and MECH 310/CIVE 310.
Description: Subsonic and supersonic air flow theory, dynamics of flight, performance parameters, rotor analysis, and special topics.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 414 Compressible Flow
Crosslisted with: MECH 814
Prerequisites: MECH 300 and MECH 310/CIVE 310.
Description: Analysis of the flow of compressible fluids by means of the momentum equation, continuity equation, and the laws of thermodynamics and some application of thermodynamic laws to incompressible fluids.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 415 Two-Phase Flow
Crosslisted with: MECH 815
Prerequisites: MECH 310/CIVE 310 and MECH 380, or parallel.
Description: Transport phenomena of homogeneous and heterogeneous types of mixtures such as solid-liquid, liquid-liquid, and liquid-gas. Properties of components and mixtures. Flow induced vibrations and parameter distributions. Optimization and design problems in multiphase systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 416 Engineering Acoustics
Crosslisted with: MECH 816
Prerequisites: MECH 310 and MATH 221/MATH 821.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
MECH 420 Heat Transfer
Crosslisted with: MECH 820
Prerequisites: MECH 310
Description: Heat transfer by conduction, convection, and radiation. Correlation of theory with experimental data and engineering design.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 421 Elements of Nuclear Engineering
Crosslisted with: MECH 821, ENGR 421
Prerequisites: ENGR 300 or 301 or 310; MATH 208/208H; and PHYS 212/212H
Description: Survey of nuclear engineering concepts and applications. Nuclear reactions, radioactivity, radiation interaction with matter, reactor physics, risk and dose assessment, applications in medicine, industry, agriculture, and research.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 422 Industrial Quality Control
Crosslisted with: MECH 822
Prerequisites: MECH 321 or STAT 380
Description: Statistical process control and quality assurance techniques in manufacturing. Control charts, acceptance sampling, and analyses and design of quality control systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 424 Laser Material Processing with Compressible Flow Perspective
Crosslisted with: MECH 824
Prerequisites: Permission.
Description: Fundamentals of laser material processing. Laser material interactions from the compressible flow perspective. Analytical, semi-analytical, and numerical approaches.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 425 Solar Energy Engineering
Crosslisted with: MECH 825
Prerequisites: MECH 420 or permission.
Description: Conversion of solar energy into more useful forms with emphasis on environmental heating and cooling applications. Includes solar energy availability, solar collectors and design, solar systems and their simulation and solar economics.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 426 Heat Transfer at Nanoscales and in Ultrashort Time Domains
Crosslisted with: MECH 826
Prerequisites: MECH 420.
Description: Heat transfer in nanoscale and nanostructured materials. Heat transfer in ultrafast laser materials processing.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 431 Computational Heat Transfer and Fluid Flow
Crosslisted with: MECH 831
Prerequisites: MECH 310; MATH 314; MECH 420 or parallel.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 434 Facility Planning and Design
Prerequisites: IMSE 315
Description: Design, analysis and layout of facilities: queuing, material handling systems, material flow analysis, systematic layout planning and design of warehouse facilities.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 436 Introduction to Continuum Biomechanics
Crosslisted with: MECH 836
Prerequisites: MECH 373; MECH 310 and 420.
Description: Introduction to biomechanics. Basic anatomy, biomaterials, kinematics, dynamics, visco-elasticity, bio-fluid mechanics, and bio-heat transfer.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 437 Biomedical Device Design
Crosslisted with: MECH 837
Prerequisites: ENGM 223, 325, and 373, or equivalent
Description: Design of devices intended for use in biomedical environments. Introduction to modeling of the bio-environments, biomaterials, and material selection. Overview of design methodologies and strategies used in biomedical device design from a material properties perspective. Introduction to federal regulation and other pertinent issues.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
MECH 438 Mechanics of Biomaterials
Crosslisted with: MECH 838
Prerequisites: MECH 343 or parallel
Description: Theory, application, simulation, and design of biomaterials that apply mechanical principles for solving medical problems (case studies in artery, brain, bone, etc.). Tentative Topics include Mechanical characterization of biomaterials; Bio-manufacturing a tissue; Function-structure relationship; Design and analysis of medical implants; Active response of biomaterials: growth and remodeling mechanism; Cellular behavior and measurements, etc.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 442 Intermediate Kinematics
Crosslisted with: MECH 842
Prerequisites: MECH 342.
Description: Analytical cam design. Geometry of constrained plane motion and application to the design of mechanisms. Analysis and synthesis of pin-jointed linkage mechanisms.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 444 Intermediate Dynamics of Machinery
Crosslisted with: MECH 844
Prerequisites: MECH 342 and MECH 350.
Description: Fundamentals of vibration, vibration and impact in machines, balance of rotors, flexible rotor dynamics and instabilities, parametric vibration, advanced dynamics and design of cam mechanisms, and dynamics of flywheel.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: MECH 915

MECH 445 Mechanical Engineering Design Concepts
Crosslisted with: MECH 845
Prerequisites: MECH 200, MECH 342, MECH 350, and MECH 310/CIVE 310.
Description: Development of design concepts. Introduction to synthesis techniques and mathematical analysis methods. Applications of these techniques to mechanical engineering design projects.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: MECH 915; MECH 933; MECH 935; MECH 938

MECH 446 Mechanical Engineering Design I
Prerequisites: MECH 300, MECH 310, MECH 343, MECH 350, professional admission to Mechanical Engineering BS program
Description: Synthesis, design, and a written report on two projects, plus a proposal for the students final design project in MECH 447. The two projects should span the general areas of mechanical engineering developing breadth, resourcefulness, creativity and most importantly, the use of the design process. Guest lectures by practicing designers will be a part of the class when appropriate.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: MECH 447
ACE: ACE 10 Integrated Product

MECH 447 Mechanical Engineering Design II
Prerequisites: MECH 446, professional admission to Mechanical Engineering BS program
Description: Definition, scope, analysis, synthesis, and the design for the solution of a comprehensive engineering problem in any major area of mechanical engineering.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LAB
ACE: ACE 10 Integrated Product

MECH 448 Advanced Mechanics of Materials
Crosslisted with: MECH 848
Prerequisites: MECH 373, MECH 325.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: MECH 915; MECH 933; MECH 935; MECH 938

MECH 449 Advanced Dynamics
Crosslisted with: MECH 849
Prerequisites: MECH 373 and MATH 221/821.
Description: Particle Dynamics using Newton's laws, energy principles, momentum principles. Rigid body dynamics using Euler's equations and Lagrange's equations. Variable mass systems. Gyroscopic motion.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: MECH 935

MECH 450 Mechanical Engineering Control Systems Design
Crosslisted with: MECH 850
Prerequisites: MECH 350.
Description: Applications of control systems analysis and synthesis for mechanical engineering equipment. Control systems for pneumatic, hydraulic, kinematic, electromechanical, and thermal systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
MECH 451 Introduction to Finite Element Analysis
Prerequisites: Open to College of Engineering Students only.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 452 Experimental Stress Analysis I
Crosslisted with: MECH 852
Prerequisites: MECH 325.
Description: Investigation of the basic theories and techniques associated with the analysis of stress using mechanical strain gages, electric strain gages, brittle lacquer, photoelasticity, and membrane analogy.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 453 Robotics: Kinematics and Design
Crosslisted with: MECH 853
Prerequisites: MECH 350.
Description: Robotics synthesize some aspects of human function by the use of mechanisms, sensors, actuators, and computers.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 454 Introduction to Continuum Modeling
Crosslisted with: MECH 854
Prerequisites: MATH 221/821, MECH 325 and MECH 373
Description: Basic concepts of continuum modeling. Development of models and solutions to various mechanical, thermal and electrical systems. Thermo-mechanical and electro-mechanical coupling effects. Differential equations, dimensional methods and similarity.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 455 Vehicle Dynamics
Crosslisted with: MECH 855
Prerequisites: MECH 343 and 350.
Description: Introduction to basic mechanics governing automotive vehicle dynamic acceleration, braking, ride, handling and stability. Analytical methods, including computer simulation, in vehicle dynamics. The different components and subsystems of a vehicle that influence vehicle dynamic performance.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 456 Dynamics of Internal Combustion Engines
Crosslisted with: MECH 856
Prerequisites: MECH 342 and 343.
Description: Basics of design of the internal combustion engines. Design of various engine parts such as pistons, connecting rods, valve trains, crankshafts, and the vibration dampers. Dynamics of the engine. The vibration of the crankshaft assembly and the valve train. Balancing of the engines.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 457 Mechatronic Systems Design
Crosslisted with: MECH 857
Prerequisites: ECEN 231; MECH 350 or parallel.
Notes: Lab sessions allow for constructing mechatronic systems. Lab time arranged. A comprehensive design project included.
Description: Theory, application, simulation, and design of systems that integrate mechanical, computer, and electronic components.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 458 Digital Control of Mechanical Systems
Crosslisted with: MECH 858
Prerequisites: MECH 450
Description: Introduction to digital measurement and control of mechanical systems. Applications of analysis and synthesis of discrete time systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 470 Theory and Practice of Materials Processing
Crosslisted with: MECH 870
Description: Theory, practice and application of conventional machining, forming and non-traditional machining processes with emphasis on tool life, dynamics of machine tools and adaptive control.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

MECH 474 Manufacturing Systems I
Crosslisted with: MECH 874
Prerequisites: Open to College of Engineering Students only.
Description: Principles of automated production lines; analysis of transfer lines; group technology; flexible manufacturing systems; and just-in-time; and optimization strategies for discrete parts manufacturing.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 476</td>
<td>Manufacturing Information Systems</td>
<td>MECH 876</td>
<td>Senior standing; CSCE 155A, CSCE 155E, CSCE 155H, CSCE 155N, or CSCE 155T or equivalent. An exploration of information systems and their impact in a manufacturing environment. Software, hardware, database systems, enterprise resource planning, networking, and the Internet.</td>
<td>3</td>
</tr>
<tr>
<td>MECH 480</td>
<td>Numerical Methods in Engineering</td>
<td>MECH 880</td>
<td>MATH 221/821; and Computer Programming. Linear Algebra recommended.</td>
<td>3</td>
</tr>
<tr>
<td>MECH 483</td>
<td>Engineering Analysis with Finite Elements</td>
<td>MECH 883</td>
<td>Analysis of engineering systems using finite elements; a critical and challenging task performed during the design process for many engineering systems. Four very distinct domains are studied: Structural stress analysis, heat transfer, fluid flow, and modal analysis.</td>
<td>3</td>
</tr>
<tr>
<td>MECH 487</td>
<td>Thermal Fluids Laboratory</td>
<td>MECH 300 and 380; MECH 420/820 or parallel.</td>
<td>Design, execution, and evaluation of physical experiments in the areas of thermodynamics, fluid mechanics, and heat transfer.</td>
<td>2</td>
</tr>
<tr>
<td>MECH 498H</td>
<td>Honors Thesis</td>
<td>MECH 499H</td>
<td>Senior standing in mechanical engineering; admission to the University Honors Program. Independent research project executed under the guidance of a member of the faculty of the Department of Mechanical Engineering which contributes to the advancement of knowledge in the field. Culminates in the presentation of an honors thesis to the department and college.</td>
<td>6.00</td>
</tr>
<tr>
<td>MECH 491</td>
<td>Special Topics in Engineering Mechanics</td>
<td>MECH 891</td>
<td>Permission.</td>
<td>6</td>
</tr>
<tr>
<td>MECH 498</td>
<td>Laboratory and Analytical Investigations</td>
<td>MECH 898</td>
<td>Open to College of Engineering Students only.</td>
<td>6</td>
</tr>
<tr>
<td>MECH 499</td>
<td>Laboratory and Analytical Investigations</td>
<td>MECH 899</td>
<td>Open to College of Engineering Students only.</td>
<td>6</td>
</tr>
<tr>
<td>MECH 499H</td>
<td>Honors Thesis</td>
<td>MECH 499H</td>
<td>Senior standing in mechanical engineering; admission to the University Honors Program. Independent research project executed under the guidance of a member of the faculty of the Department of Mechanical Engineering which contributes to the advancement of knowledge in the field. Culminates in the presentation of an honors thesis to the department and college.</td>
<td>6</td>
</tr>
</tbody>
</table>

PLEASE NOTE

This document represents a sample 4-year plan for degree completion. Actual course selection and sequence may vary and should be discussed individually with your college or department academic advisor. Advisors also can help you plan other experiences to enrich your undergraduate education such as internships, education abroad, undergraduate research, learning communities, and service learning and community-based learning.

15 HR TERM 1

Chemistry Sequence

complete CHEM 109
Freshman Seminar
complete ENGR10#

EN GR 10 becomes critical to your success in the major if not completed by the end of the first term of enrollment.

Math Sequence
complete MATH 106

ACE 5 Humanities
complete 1 from ACE5

Complete an ACE 5, 6, 7, or 9 requirement this term.

ACE 2 Comm Skills
complete ENGR 100

16 HR TERM 2
Chemistry Sequence
complete CHEM 110

Computer Programming
complete CSCE 155N

Math Sequence
complete MATH 107

17 HR TERM 3

16 HR TERM 4
ACE 3/4 Math/Science
complete MATH 221

Engr Topics Reqd/ACE 8
complete BSEN 206, MECH 130

Sophomore Seminar
complete ENGR20#

ACE 3/4 Math/Science
complete MATH 221

Engr Topics Reqd/ACE 8
complete MATL 360, MECH 200

MECH Core Courses
complete MECH 325, MECH 373
MECH 373 becomes critical to your success in the major if not completed by the end of the fourth term of enrollment. MECH 325 becomes critical to your success in the major if not completed by the end of the fifth term of enrollment.

16 HR TERM 5
Engr Topics Reqd/ACE 8
complete ECEN 211, ECEN 231, MECH 300

Linear Algebra
complete MATH 314

MATH 314 becomes critical to your success in the major if not completed by the end of the fifth term of enrollment.

MECH Core Courses
complete MECH 342

MECH 342 becomes critical to your success in the major if not completed by the end of the fifth term of enrollment.

ACE 1 Written Comm
complete JGEN 200

Milestones
1. Professional Admission into College.

15 HR TERM 6
ACE 3/4 Math/Science
complete either MECH 321 or STAT 380

Engr Topics Reqd/ACE 8
complete MECH 310, MECH 343, MECH 350, MECH 380

17 HR TERM 7
Engr Topics Reqd/ACE 8

MECH 370, MECH 420, MECH 488

8hr

ACE 10 Capstone
complete MECH 446

3hr

MECH 446 becomes critical to your success in the major if not completed by the end of the seventh term of enrollment.

Mech Engr Tech Elective
complete 1 from MATL 460, MATL 461, MATL 462, MATL 467, MATL 469, MATL 470, MATL 471, MATL 472, MATL 473, MATL 474, MATL 477, MECH 403, MECH 404, MECH 405, MECH 413, MECH 414, MECH 415, MECH 416, MECH 422, MECH 424, MECH 425, MECH 426, MECH 431, MECH 436, MECH 444, MECH 448, MECH 449, MECH 451, MECH 452, MECH 453, MECH 454, MECH 455, MECH 458, MECH 475, MECH 480, MECH 481, MECH 483

3hr

ACE 6 Social Sciences
complete 1 from ACE6

3hr

Complete an ACE 5, 6, 7, or 9 requirement this term.

17 HR TERM 8
Professional Ethics
complete ENGR 400

1hr

ACE 10 Capstone
complete MECH 447

2hr

MECH 447 becomes critical to your success in the major if not completed by the end of the eighth term of enrollment.

Engr Topics Reqd/ACE 8
complete MECH 487

2hr

Mech Engr Design Elective
complete 1 from MATL 465, MATL 466, MATL 468, MECH 406, MECH 407, MECH 408, MECH 437, MECH 442, MECH 445, MECH 450, MECH 456, MECH 457
Senior Elective

recommend 1 or more courses

See Advisor in regards to the Senior Elective requirement.

ACE 7 Arts

complete 1 from ACE7

Complete an ACE 5, 6, 7, or 9 requirement this term.

ACE 9 Global/Human Divers

complete 1 from ACE9

Complete an ACE 5, 6, 7, or 9 requirement this term.

Graduation Requirements
1. 129 hours required for graduation.
2. 2.40 GPA required for graduation.
3. 30 of the last 36 hours must be taken at UNL/UNO.