COMPUTER ENGINEERING

Description

Websites: https://computing.unl.edu and https://engineering.unl.edu/ece/

Email: computing@unl.edu

The College of Engineering offers a comprehensive computer engineering undergraduate program to students on the City (Lincoln) and Scott (Omaha) campuses of the University of Nebraska-Lincoln. Curriculum requirements are nearly identical on both campuses and students can complete all degree requirements on either campus.

In the college, the School of Computing and the Department of Electrical and Computer Engineering offer this baccalaureate degree program in computer engineering that prepares graduates for professional practice in commerce, industry, and government and for post-graduate education to enter careers in research, development, and academia.

The focus of the program is hands-on integrated hardware/software system design. Increasingly, diverse systems, products, and processes depend on computers for design, control, data acquisition, and other functions. The computer engineer possesses the range of expertise to have an integrated view of computer-based systems and to make global design decisions.

Consistent with this focus, the computer engineering baccalaureate program develops:

- The ability to view computer systems as an integrated continuum of technologies and to engage in integrated system-level design. Studies include mathematical foundations, digital logic and technologies, programming and software design, system components and design, application of theory, experimentation, design tools and techniques, and documentation and maintenance.

- The ability to work with professionals in related fields over the spectrum of system design. Studies include natural sciences, electricity/electronics, and programming and software design.

- Skills to quickly adapt to new work environments, assimilate new information, and solve new problems. Studies develop skills in the application of theory, experimentation, design tools and techniques, documentation and maintenance, and technical communications.

- The background and perspective for post-graduate education. Studies develop skills in the application of theory, experimentation, and lifelong learning/professional development.

- Ability to work in conformance with societal needs and expectations. Studies include liberal arts and ethical/social issues.

- Insight into the world of practicing professionals for collaborations, mutual support, and representing the profession to government and society. Studies include teamwork and lifelong learning/professional development, plus students are provided multiple opportunities for involvement in organizations such as ACM, UPE, and IEEE.

The Electrical and Computer Engineering department also offers a degree of bachelor of science in electrical engineering. All students should see their advisor during their first semester to ensure they understand the requirements for each undergraduate degree program. Students should consult with their advisors each semester for registration advising.

Introductory Courses

CSCE 155E Computer Science I: Systems Engineering Focus emphasizes computing for systems engineering, such as control systems, mobile computing, and embedded devices and is designed for students majoring in computer engineering. CSCE 164 Introduction to Computer Engineering provides an introduction to basic concepts and skills needed in computer engineering.

Entering students who do not have adequate programming background should talk to their advisors about taking additional beginner courses.

Program Professional Admission

Students are expected to meet minimum college entrance requirements. After being admitted to the college, students wishing to pursue a degree in computer engineering must go through the Professional Admission process, which is automatically performed for qualifying students at the end of the sophomore year. In order to be considered for Professional Admission to the computer engineering program, students must receive at least a C+ in CSCE 230 and CSCE 310 (RAIK 283H), at least a C in ECEN 215, with a GPA of at least 2.5 (semester and cumulative). If a student’s cumulative GPA drops below 2.4, the student may be placed on restricted status, may be removed from the College, and may not be able to graduate.

Accreditation

The Computer Engineering (BS) program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the commission’s General Criteria and Program Criteria for Electrical, Computer, Communications, Telecommunication(s) and Similarly Named Engineering Programs.

Program Educational Objectives

The Program Educational Objectives (PEOs) are a statement of what graduates are doing, or are capable of doing, three to five years after graduation. The students in the Computer Engineering program receive a strong foundation in engineering science and design that not only enables them to pursue productive careers in the computer engineering fields but also play an integral role in advancing other areas including business, management, medicine and manufacturing through computer engineering technologies. The Program Educational Objectives for the Computer Engineering program are that graduates will be:

- Employed in business, non-profit, academia, government, or industry.

- Successful engineers who view computer systems as an integrated continuum of technologies, which engaging and collaborating with professionals in related fields to provide innovative, effective, responsible, and sustainable computer engineering solutions.

- Capable of quickly adapting to new work environments, assimilating new information, solving new problems, and creating new devices.

- Engaging in lifelong learning, which may include postgraduate education and being part of professional organizations, to successfully adapt to technological, industry specific, and cultural changes and to foster adept functioning in society.
• Performing engineering practice in a context that reflects awareness of the ethics of their profession and of the impacts of their work on the profession and society at large.

These Program Educational Objectives were developed with input from the program's constituency, consisting of employers (including the Industry Advisory Board), graduates of the program, and faculty.

College Requirements

College Admission

College Entrance Requirements

Students must meet both the University and College of Engineering entrance requirements. The following includes both the University and College of Engineering entrance requirements.

Students must have high school credit for (one unit is equal to one high school year):

1. Mathematics – 4 units: 2 of algebra, 1 of geometry, and 1 of precalculus and trigonometry
2. English – 4 units
3. Natural sciences – 3 units that must include 1 unit of physics and 1 unit of chemistry (chemistry requirement waived for students in construction management or computer science)
4. Foreign language – 2 units of a single foreign language
5. Social studies – 3 units
6. Students having a composite ACT score of 28 or greater (or equivalent SAT score) will be admitted to the College of Engineering even if they lack any one of the following: trigonometry, chemistry, or physics. Students without test scores who are missing a full unit of trigonometry/pre-calculus/calculus or chemistry or physics will be evaluated through College Review.
7. Students having an ACT score of 19 or less in English (or equivalent SAT score) will be admitted to the College of Engineering if they have a grade lower than B in high school English.

A total of 16 units is required for admission.

Engineering requires that student performance meet one of the following standards: composite ACT of 24, SAT of 1180, ACT Math subscore of 24, SAT Math subscore of 580, or a 3.5 cumulative GPA.

Any domestic first-year student who does not gain admission to Engineering but does gain admission to the University of Nebraska-Lincoln (UNL) will be reviewed through College Review. College Review is conducted through the College Review Committee which considers factors beyond standardized testing. Any first-year student who is not admitted through college review is placed in Pre-Engineering (PENG) with the Exploratory and Pre-Professional Advising Center (Explore Center). Students in the Explore Center can transfer to the College of Engineering once college admission requirements are met.

Students for whom English is not their language of nurture must meet the minimum English proficiency requirements of the University.

Students who lack entrance units may complete precollege training by Independent Study through the University of Nebraska–Lincoln Office of On-line and Distance Education, in summer courses, or as a part of their first or second semester course loads while in the Explore Center or other colleges at UNL.

Other Admission Requirements

Students who transfer to the University of Nebraska–Lincoln from other accredited colleges or universities and wish to be admitted to the College of Engineering (COE) must meet COE first-year student entrance requirements, have a minimum cumulative GPA of 2.5, and be calculus-ready. Students not meeting either of these requirements must enroll in the Explore Center or another University college until they meet COE admission requirements. Students transferring from UNO, UNL, or UNK to the College of Engineering must be in good academic standing with their institution.

The COE accepts courses for transfer for which a C or better grade was received. Although the University of Nebraska–Lincoln accepts D grades from the University of Nebraska Kearney and the University of Nebraska Omaha, not all majors in the COE accept such low grades. Students must conform to the requirements of their intended major and, in any case, are strongly encouraged to repeat courses with a grade of C- or less.

Students who were previously admitted to COE and are returning to the College of Engineering must demonstrate a cumulative GPA of 2.5 to be readmitted to COE.

College Degree Requirements

Grade Rules

Grade Appeals

In the event of a dispute involving any college policies or grades, the student should appeal to their instructor, and appropriate department chair or school director (in that order). If a satisfactory solution is not achieved, the student may appeal their case through the College Academic Appeals Subcommittee.

Catalog Rule

Students must fulfill the requirements stated in the catalog for the academic year in which they are first admitted at the University of Nebraska–Lincoln. In consultation with advisors, a student may choose to follow a subsequent catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at Nebraska in the College of Engineering. Students must complete all degree requirements from a single catalog year. The catalog which a student follows for graduation.

Students who have transferred from a community college may be eligible to fulfill the requirements as stated in the catalog for an academic year in which they were enrolled at the community college prior to attending the University of Nebraska-Lincoln. This decision should be made in consultation with the student's College of Engineering academic advising team (e.g., ESS professional advisor and the chief faculty advisor for the student's declared degree program). The chief faculty advisor has the final authority for this decision. Eligibility is based on a) enrollment in a community college during the catalog year the student wishes to utilize, b) maintaining continuous enrollment of at least 12 credit hours per semester at the previous institution for at least 2 semesters, and c) continuous enrollment at the University of Nebraska-Lincoln within 1 calendar year from the student's last term at the previous institution.
Students must complete all degree requirements from a single catalog year and within the timeframe allowable for that catalog year.

Student Outcomes

Graduates of computer engineering must have:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. An ability to communicate effectively with a range of audiences.
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Major Requirements

Computer Engineering Core (57 hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 155E</td>
<td>Computer Science I: Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>or ECEN 155E</td>
<td>Focus</td>
<td></td>
</tr>
<tr>
<td>or CSCE 155H</td>
<td>Honors: Computer Science I</td>
<td></td>
</tr>
<tr>
<td>CSCE 156</td>
<td>Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td>or CSCE 156H</td>
<td>Honors: Computer Science II</td>
<td></td>
</tr>
<tr>
<td>CSCE 164</td>
<td>Introduction to Computer Engineering</td>
<td>2</td>
</tr>
<tr>
<td>CSCE 230</td>
<td>Computer Organization</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 235</td>
<td>Introduction to Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>or CSCE 235H</td>
<td>Honors: Introduction to Discrete Structures</td>
<td></td>
</tr>
<tr>
<td>CSCE 251</td>
<td>Unix Programming Environment</td>
<td>1</td>
</tr>
<tr>
<td>CSCE 310</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>or CSCE 310H</td>
<td>Honors: Data Structures and Algorithms</td>
<td></td>
</tr>
<tr>
<td>CSCE 335</td>
<td>Digital Logic Design</td>
<td>3</td>
</tr>
<tr>
<td>or ECEN 370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSCE 336</td>
<td>Embedded Systems</td>
<td>3</td>
</tr>
<tr>
<td>or ECEN 220</td>
<td>Introduction to Embedded Systems</td>
<td></td>
</tr>
<tr>
<td>CSCE 351</td>
<td>System Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>CSCE 361</td>
<td>Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>or CSCE 361H</td>
<td>Software Engineering</td>
<td></td>
</tr>
<tr>
<td>CSCE 463</td>
<td>Data and Network Security</td>
<td>3</td>
</tr>
<tr>
<td>or ECEN 484</td>
<td>Network Security</td>
<td></td>
</tr>
<tr>
<td>CSCE 478</td>
<td>Introduction to Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>or ECEN 478</td>
<td>Practical Machine Learning</td>
<td></td>
</tr>
<tr>
<td>ECEN 215</td>
<td>Electronics and Circuits I</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 222</td>
<td>Electronic Circuits I</td>
<td>4</td>
</tr>
<tr>
<td>ECEN 235</td>
<td>Introductory Electrical Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>ECEN 304</td>
<td>Signals and Systems I</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 305</td>
<td>Probability Theory and Statistics for Electrical and Computer Engineers</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 325</td>
<td>Communication and Networking</td>
<td>4</td>
</tr>
<tr>
<td>ECEN 327</td>
<td>Discrete Systems Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>or ECEN 313</td>
<td>Switching Circuits Theory</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 57

Senior Design Experience (5-6 hrs)

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 488</td>
<td>Computer Engineering Professional Development</td>
<td>2-3</td>
</tr>
<tr>
<td>or CSCE 488H</td>
<td>Honors Computer Engineering Professional Development</td>
<td></td>
</tr>
<tr>
<td>or ECEN 494</td>
<td>Electrical Engineering Capstone I</td>
<td></td>
</tr>
<tr>
<td>or ECEN 496</td>
<td>Computer Engineering Capstone I</td>
<td></td>
</tr>
<tr>
<td>or RAIK 401H</td>
<td>Honors: RAIK Design Studio I</td>
<td></td>
</tr>
<tr>
<td>or RAIK 403H</td>
<td>Honors: RAIK Design Studio II</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 489</td>
<td>Computer Engineering Senior Design Project</td>
<td>3</td>
</tr>
<tr>
<td>or CSCE 489H</td>
<td>Honors Computer Engineering Senior Design Project</td>
<td></td>
</tr>
<tr>
<td>or ECEN 495</td>
<td>Electrical Engineering Capstone II</td>
<td></td>
</tr>
<tr>
<td>or ECEN 499</td>
<td>Computer Engineering Capstone II</td>
<td></td>
</tr>
<tr>
<td>or RAIK 402H</td>
<td>Honors: RAIK Design Studio II</td>
<td></td>
</tr>
<tr>
<td>or RAIK 404H</td>
<td>Honors: RAIK Design Studio IV</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 5-6

Note: CSCE 488 or CSCE 488H and CSCE 489 or CSCE 489H are to be taken in consecutive semesters. CSCE 488, CSCE 488H, or RAIK 401H will satisfy the ACE 8 requirements. ECEN 494, ECEN 496, and RAIK 403H do not satisfy the ACE 8 requirement. CSCE 489, CSCE 489H, or RAIK 402H will satisfy the ACE 10 requirement. RAIK 404H does not satisfy the ACE 10 requirement.

Double majors in electrical engineering may elect to take either of the senior design course sequences (CSCE 488 / CSCE 488H) then CSCE 499 / CSCE 499H or ECEN 496 then ECEN 499); or ECEN 494 then ECEN 495. Students not taking CSCE 488 / CSCE 488H must satisfy ACE outcome 8 with another course(s).

Technical Electives (18 hours)

Complete a total of 18 hours of technical electives.

- Complete 12 hours of courses at the 300/400 level from CSCE or ECEN.
- Complete an additional 6 hours from any 300 or 400 level course from the following subject codes: AGEN, BSEN, CHME, CIVE, CSCE, CONE, ECEN, MECH, MATL, SOFT, BIOS, CHEM, MATH, STAT, PHYS, ASTR as well as selected 100 and 200 classes listed below. BIOS 310 and MATH 493 will not count towards technical electives.

Additional 100/200 Level Courses

AGEN 225 / BSEN 225 | Engineering Properties of Biological Materials | 3 |
ASTR 204 | Introduction to Astronomy and Astrophysics | 3 |
ASTR 224 Astronomy and Astrophysics Laboratory 1
BIOS 206 General Genetics 4
BIOS 213 Human Physiology 3
CHEM 109A General Chemistry I 3
CHEM 110A General Chemistry II 3
CHEM 113A Fundamental Chemistry I 3
CHEM 114 Fundamental Chemistry II 3
CHME 202 Mass and Energy Balances 3
MATH 208 Calculus III 4
MATL 260 Elements of Materials Science 3
MATL 262 Materials Laboratory I 1
MECH 200 Engineering Thermodynamics 3
MECH 223 Engineering Statics 3
MECH 250 Mechanics I 2
PHYS 213 General Physics III 4
PHYS 223 General Physics Laboratory III 1

Mathematics (15 hours)
MATH 106 Calculus I (ACE 3) 5
MATH 107 Calculus II 4
MATH 221 Differential Equations 3
MATH 314 Linear Algebra 3

Total Credit Hours 15

Science (9 hours)
PHYS 211 General Physics I (ACE 4) 4
PHYS 212 General Physics II 4
PHYS 221 General Physics Laboratory I 1

Total Credit Hours 9

Other Supporting Courses (18 hours)
ENGR 10 Freshman Engineering Seminar 0
or CSCE 10 Introduction to CSE 0
ENGR 20 Sophomore Engineering Seminar 0
JGEN 200 Technical Communication I (ACE 1) 1
Select one of the following (ACE 2):
COMM 286 Business and Professional Communication 3
ENGR 100 Interpersonal Skills for Engineering Leaders 3
JGEN 300 Technical Communication II 3
Select one course each from ACE 5, 6, 7, and 9 12

Total Credit Hours 18

1 JGEN 200 may be replaced by any ACE 1 course.

Program Assessment. In order to assist the school in evaluating the effectiveness of its programs, majors will be required to complete a written exit survey in their senior year. The results of the survey will in no way affect a student's GPA or graduation.

Additional Major Requirements
Grade Rules
C- and D Grades
Applicants for professional admission to computer engineering must meet the usual college and department requirements. The school requires the minimum grade listed below in the following core courses (or their equivalents):

• Grade of C+ or higher in CSCE 230/ECEN 230 and CSCE 310 (or RAIK 283H)
• Grade of C or higher in ECEN 215

Description
The Jeffrey S. Raikes School of Computer Science and Management is a unique program developing world-class innovators and leaders through an interdisciplinary computer science and business management education. Raikes School students are selected from the nation's top high school graduates. The typical Raikes School student scores a 31 or higher on their ACT (or 1400 on the SAT), ranks in the top 10% of their high school class and has challenged themselves both inside and outside the classroom.

Students who wish to be considered for admission to the Raikes School must complete the application to the University of Nebraska as well as the application for the University Honors Program and the Raikes School. Submitted applications are then reviewed by the Director of Recruitment and Student Success based on the following areas: academics, oral and written communication, business and/or computer programming experience, leadership and service experience, involvement and related work experience. Interviews are conducted with selected candidates in January. At the beginning of February, selected students receive offers from the Raikes School along with notification of any Raikes School scholarship awards. Raikes School scholarship awards are typically 4-year renewable awards covering a portion of room and board which can be stacked on top of most other awards received from Nebraska.

Students in the Raikes School live in the Kauffman Academic Residential Center, which consists of suite-style rooms, technology enabled classrooms, and faculty/staff offices on the first floor. This living arrangement offers the advantage of a community atmosphere within a large university setting.

Students take classes with their cohort each semester in the Raikes School. The Raikes School's curriculum includes core business and computing concepts as well as data science, leadership and communication coursework. Approximately 60-65 credit hours are completed in the Raikes School, leaving an additional 60-65 credit hours for students to complete in their respective areas of interest. Students in the Raikes School pursue a variety of majors including: computer science, computer engineering, software engineering, electrical engineering, actuarial science, business management, economics, finance and mathematics.

Students interested in learning more about the Jeffrey S. Raikes School of Computer Science and Management are encouraged to contact Theresa Luensmann, Assistant Director of Recruitment and Outreach, at tluensmann2@unl.edu or 402-472-9097, or visit http://raikes.unl.edu (http://raikes.unl.edu/).

Plan for Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAIK 10</td>
<td>Raikes School Freshman Seminar</td>
<td>0</td>
</tr>
</tbody>
</table>

Year 1
Fall
RAIK 183H Honors: Computer Problem Solving Essentials 4
RAIK 163H Honors: Innovation Processes and Software Engineering Fundamentals 3
UHON 101H Honors Community (University Honors Program Requirement) 1
UHON 189H University Honors Seminar (University Honors Program Requirement) 3
MATH 106 Calculus I (ACE 3) 5

Credit Hours 16

Spring
RAIK 184H Honors: Software Development Essentials 4
RAIK 181H Honors: Foundations of Accounting 4
RAIK 182H Honors: Foundations of Economics (ACE 6) 4
RAIK 185H Honors: Foundations of Leadership I 1
MATH 107 Calculus II 4

Credit Hours 17

Year 2

Fall
RAIK 283H Honors: Software Engineering III 4
RAIK 341H Honors: Marketing 3
RAIK 270H Statistics and Applications 3
CSCE 230 Computer Organization 4
CSCE 251 Unix Programming Environment 1
PHYS 211 & PHYS 221 General Physics I and General Physics Laboratory I (ACE 4) 5

Credit Hours 20

Spring
RAIK 186H Honors: Foundations of Leadership II 1
RAIK 348H Software Engineering IV (ACE 2) 3
RAIK 381H Honors: Fundamentals of Finance 3
RAIK 370H Honors: Data and Models II: Data Science Fundamentals (Technical Elective) 3
ECEN 220 or CSCE 336 Introduction to Embedded Systems or Embedded Systems 3
ECEN 215 Electronics and Circuits I 3
ECEN 235 Introductory Electrical Laboratory I 1

Credit Hours 17

Year 3

Fall
UHON 99H Honors Experience (University Honors Program Requirement) 0
RAIK 401H Honors: RAIK Design Studio I 3
JGEN 200 Technical Communication I (ACE 1) 1
ECEN 304 Signals and Systems I 3
ECEN 236 Introductory Electrical Laboratory II 1
ECEN 327 Discrete Systems Laboratory 1
PHYS 212 General Physics II 4
MATH 221 Differential Equations 3

Credit Hours 18

Spring
RAIK 402H Honors: RAIK Design Studio II (ACE 10) 3
RAIK 371H Honors: Data & Models III: Fundamentals of Management Science 3
RAIK 372H Honors: Business Law (ACE 8) 3
CSCE 335 or ECEN 370 Digital Logic Design or Digital Logic Design 3
MATH 314 Linear Algebra 3
Technical Elective 2 3

Credit Hours 18

Year 4

Fall
RAIK 403H or RAIK 405H Honors: RAIK Design Studio III (Technical Elective) or Honors: RAIK Research Studio I 3
CSCE 351 System Resource Management 3
ECEN 325 Communication and Networking 4
Math/Statistics Elective (Technical Elective) 4-5
ACE Elective (5, 7, or 9) 3
RAIK 40 Professional and Life Skills 0

Credit Hours 17-18

Spring
RAIK 404H or RAIK 406H Honors: RAIK Design Studio IV (Technical Elective) or Honors: RAIK Research Studio II 3
RAIK 476H Honors: Business Strategies 3
CSCE 463 Data and Network Security 3
Technical Elective 2 3
ACE Elective (5, 7, or 9) 3
ACE Elective (5, 7, or 9) 3

Credit Hours 18

Total Credit Hours 141-142

1. JGEN 200 may be replaced by any ACE 1 course.
2. See “Technical Electives” requirement list on the non-Raikes School Major tab (p. 3).
3. Select from MATH 208, MATH 208H, MATH 428, MATH 439, STAT 412, STAT 414, or STAT 450. See advisor for other possible advanced math/stat classes.

Bachelor of Science in Computer Engineering with the Master of Science in Computer Science

In an accelerated program, a student may count up to 12 credit hours of approved graduate courses toward both the current undergraduate degree and the later graduate degree. Students must apply for graduate admission and be accepted prior to enrollment. For more information, visit https://graduate.unl.edu/academics/programs/accelerated-masters/accelerated-masters-faq (https://graduate.unl.edu/academics/programs/accelerated-masters/accelerated-masters-faq/).

The following courses are approved for this program. Requirements are the same for students completing or not completing the Raikes version of the major.

No Specialization

CSCE 823 Design and Analysis of Algorithms (replaces CSCE 423) 3
CSCE 828 Automata, Computation, and Formal Languages (replaces CSCE 428) 3
CSCE 851 Operating Systems Principles (replaces CSCE 451) 3
CSCE 862 Communication Networks (replaces CSCE 462) 3

Specialization in Computer Engineering
CSCE 823 Design and Analysis of Algorithms (replaces CSCE 423) 3
CSCE 830 Computer Architecture (replaces CSCE 430) 3
CSCE 851 Operating Systems Principles (replaces CSCE 451) 3
CSCE 862 Communication Networks (replaces CSCE 462) 3

Grading Requirements
Grading rules as defined by the undergraduate degree/major apply. Please consult your academic advisor and/or the department graduate chair for grading policy as it relates to credit applying toward a graduate degree.

CSCE 100 Introduction to Informatics
Prerequisites: Placement in to MATH 101 or higher
Notes: This course does not count towards a major or minor in Computer Science or a major in Computer Engineering or a major in Software Engineering.
Description: Introduction to the use of data-centric and information technologies and issues and challenges in today’s applications in sciences, engineering, the humanities, and the arts. Exposure to computational thinking and programming, statistical thinking and research design, data analysis and database techniques, and visualization and creative thinking.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 101 Fundamentals of Computer Science
Notes: A course in the science of computation suitable for prospective CSCE majors and for non-CSCE majors who desire a deeper understanding of computers and the work of computer scientists. This course may be used to satisfy a technical elective for Computer Science and Computer Engineering majors if taken at UNL prior to CSCE 155, CSCE 156, CSCE 310 and CSCE 361, or for Software Engineering majors, if taken at UNL prior to SOFT 160, SOFT 161, SOFT 260 and SOFT 261.
Description: Introduction to problem solving with computers. Problem analysis and specification, algorithm development, program design, and implementation in a high-level programming environment. Hardware, software, software engineering, networks, and impacts of computing on society.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CIVE 201; CIVE 202; CSCE 101L
ACE: ACE 3 Math/Stat/Reasoning
Course and Laboratory Fee: $35

CSCE 101L Fundamentals of Computing Laboratory
Prerequisites: CSCE 101 or parallel.
Notes: This course does not count towards a major or minor in Computer Science or a major in Computer Engineering or a major in Software Engineering.
Description: A variety of computer oriented exercises using many software tools is presented which supplement and are coordinated with the topics taught in CSCE 101. Students are exposed to programming, operating systems, simulation software, spreadsheets, database software, the Internet, etc. Applications software introduced in the context of tools to explore the computer science topics and as alternatives to traditional programming languages. Emphasis on learning by experiment, with a goal of developing problem solving skills. A major component is the study of a programming language-the choice of which may vary by course section.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option
Course and Laboratory Fee: $10

CSCE 120 Learning to Code
Prerequisites: Placement in to MATH 101 or higher
Notes: This course does not count towards a major or minor in Computer Science or a major in Computer Engineering or a major in Software Engineering. First course in a sequence for the minor in Software Development.
Description: Introduction to coding in the context of current web development technologies (JavaScript, HTML, CSS). Basic coding skills and an introduction to computing with an emphasis on processing data: data formatting and structure, data manipulation, data presentation and the basics of an interactive program.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 220; CSCE 320

CSCE 155A Computer Science I
Prerequisites: MATH 102 or a Math Placement Test score for MATH 103 or higher.
Notes: Credit may be earned in only one CSCE 155 course. Recommended for students majoring in computer science or computer engineering.
Description: Introduction to problem solving with computers. Topics include problem solving methods, software development principles, computer programming, and computing in society.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CIVE 201; CSCE 156; ECEN 156; CSCE 156H; CSCE 235; CSCE 235H; CSCE 311; CSCE 352; ECEN 106; ECEN 123; ECEN 224; MECH 300
ACE: ACE 3 Math/Stat/Reasoning
Course and Laboratory Fee: $35
CSCE 155E Computer Science I: Systems Engineering Focus
Crosslisted with: ECEN 155E
Prerequisites: MATH 102 or a Math Placement Test score for MATH 103 or higher.
Notes: Credit may be earned in only one CSCE 155 course.
Recommended for students interested in systems engineering, such as operating systems, mobile computing, and embedded devices.
Description: Introduction to problem solving with computers. Topics include problem solving methods, software development principles, computer programming, and computing in society.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CIVE 201; CSCE 156, ECEN 156; CSCE 156H; CSCE 235; CSCE 235H; CSCE 311; CSCE 352; ECEN 106; ECEN 123; ECEN 220; ECEN 224; MECH 300
ACE: ACE 3 Math/Stat/Reasoning
Course and Laboratory Fee: $35

CSCE 155H Honors: Computer Science I
Prerequisites: Good standing in UNL Honors Program; MATH 102 or a Math Placement Test score for MATH 103 or higher.
Notes: Covers the same topics as CSCE 155A, but in greater depth.
Description: Introduction to problem solving with computers. Topics include problem solving methods, software development principles, computer programming, and computing in society.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CIVE 201; CSCE 156, ECEN 156; CSCE 156H; CSCE 235; CSCE 235H; CSCE 311; CSCE 352; ECEN 106; ECEN 224; MECH 300
ACE: ACE 3 Math/Stat/Reasoning
Course and Laboratory Fee: $35

CSCE 155N Computer Science I: Engineering and Science Focus
Prerequisites: MATH 102 or a Math Placement Test score for MATH 103 or higher.
Notes: Recommended for students interested in numerical and graphical applications in engineering and science, such as applied physics, working with time-sequence data, and matrix applications.
Description: Introduction to problem solving with computers. Topics include problem solving methods, software development principles, computer programming, and computing in society.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: BSEN 311; CHME 312; CIVE 201; CSCE 156, ECEN 156; CSCE 156H; CSCE 235; CSCE 235H; CSCE 311; ECEN 106; ECEN 224; MECH 300; MECH 318; MECH 330; MECH 350; MECH 381
ACE: ACE 3 Math/Stat/Reasoning
Course and Laboratory Fee: $35

CSCE 155T Computer Science I: Informatics Focus
Prerequisites: MATH 102 or a Math Placement Test score for MATH 103 or higher.
Notes: Credit may be earned in only one CSCE 155 course.
Recommended for students interested in data and information processing, such as library and database applications, online commerce, and bioinformatics.
Description: Introduction to computers and problem-solving with computers. Topics include problem solving methods, software development principles, computer programming, and computing in society.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 156, ECEN 156; CSCE 156H; CSCE 235; CSCE 235H; CSCE 311; CSCE 352; ECEN 106; ECEN 224; MECH 300
ACE: ACE 3 Math/Stat/Reasoning
Course and Laboratory Fee: $35

CSCE 156 Computer Science II
Crosslisted with: ECEN 156
Prerequisites: A grade of "P" or "C" or better in CSCE 155A, CSCE 155E, CSCE 155H, CSCE 155N, or CSCE 155T; coreq: MATH 106.
Notes: Laboratories supplement the lecture material and give an opportunity to practice concepts.
Description: Data structures, including linked lists, stacks, queues, and trees; algorithms, including searching, sorting, and recursion; programming language topics, including object-oriented programming; pointers, references, and memory management; design and implementation of a multilayer application with SQL database.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Offered: FALL/SPR
Prerequisite for: CSCE 235; CSCE 310; CSCE 310H; CSCE 322; CSCE 322H; CSCE 378; CSCE 378H; CSCE 453H, RAIK 453H; SOFT 162
Course and Laboratory Fee: $35

CSCE 156H Honors: Computer Science II
Prerequisites: Good standing in UNL Honors Program. A grade of "P" or "C" in CSCE 155A, CSCE 155E, CSCE 155H, CSCE 155N, or CSCE 155T; coreq: MATH 106.
Notes: Laboratories supplement the lecture material and give an opportunity to practice concepts.
Description: Data structures, including linked lists, stacks, queues, and trees; algorithms, including searching, sorting, and recursion; programming language topics, including object-oriented programming; pointers, references, and memory management; design and implementation of a multilayer application with SQL database.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded
Prerequisite for: CSCE 310; CSCE 310H; CSCE 322; CSCE 322H; CSCE 378; CSCE 378H; CSCE 453H, RAIK 453H; SOFT 162
Course and Laboratory Fee: $35
CSCE 163H Honors: Innovation Processes and Software Engineering Fundamentals
Crosslisted with: RAIK 163H
Prerequisites: Good standing in the University Honors Program; admission to the Jeffrey S. Raikes School of Computer Science and Management.
Description: Introduction to innovation processes for interdisciplinary and team-oriented problem solving of software engineering, business development, and industrial design problems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Offered: FALL

CSCE 164 Introduction to Computer Engineering
Crosslisted with: ECEN 164
Notes: Project-based introduction to the computer engineering field.
Description: Introduction to basic concepts and skills needed in computer engineering. Practical application of basic computing concepts through an introduction to programming an embedded system.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Grading Option: Graded with Option
Offered: SPRING

CSCE 183H Honors: Computer Problem Solving Essentials
Crosslisted with: RAIK 183H
Prerequisites: Good standing in the University Honors Program; admission to the Jeffrey S. Raikes School of Computer Science and Management.
Description: Introduction to problem solving with computers. Problem analysis and specification, algorithm development, program design, and implementation. JAVA in a Windows platform.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded
Prerequisite for: CSCE 235; CSCE 235H; CSCE 352; ECON 215; RAIK 184H, CSCE 184H
ACE: ACE 3 Math/Stat/Reasoning

CSCE 184H Honors: Software Development Essentials
Crosslisted with: RAIK 184H
Prerequisites: Good standing in the University Honors Program; admission to the Jeffrey S. Raikes School of Computer Science and Management; and CSCE/RAIK 183H.
Description: Problem solving with computers. Problem analysis and specification, data structures, relational databases, algorithm development, and program design and implementation. Discrete mathematics topics, propositional and predicate logic, sets, relations, functions, and proof techniques. Software Development Principles.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded
Prerequisite for: BSAD 372H, RAIK 372H; CSCE 230, ECEN 230; CSCE 231; CSCE 322; CSCE 322H; CSCE 378; CSCE 378H; CSCE 453H, RAIK 453H; SOFT 260H, RAIK 283H

CSCE 181 Special Topics in Computer Science
Prerequisites: Permission.
Notes: Will not count towards a major or minor in computer science and computer engineering. Topics will vary.
Description: Aspects of computers and computing at the freshman level for non-computer science and computer engineering majors and/or minors.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option
Course and Laboratory Fee: $10

CSCE 182 Special Topics in Computer Science
Prerequisites: Permission.
Description: Aspects of computers and computing for computer science and computer engineering majors and minors. Topics vary.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option

CSCE 184 Independent Study in Computing
Prerequisites: Freshmen standing; permission of the instructor.
Description: Independent study of computer science topics performed under the guidance of a member of the faculty in the Department of Computer Science and Engineering.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 220 Software Development for Smart-Mobile Systems
Prerequisites: CSCE 120
Notes: This course does not count towards a major or minor in Computer Science or a major in Computer Engineering or a major in Software Engineering. Second course in a sequence for the minor in Software Development.
Description: Practical experience on building larger scale applications and familiarity with the tools, environments (e.g., Android or iOS), and requirements to develop software for current smart-mobile devices such as phones and tablets.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 222 Software Development for Smart-Mobile Systems
Prerequisites: CSCE 220
Notes: This course does not count towards a major or minor in Computer Science or a major in Computer Engineering or a major in Software Engineering.
Description: Practical experience on building larger scale applications and familiarity with the tools, environments (e.g., Android or iOS), and requirements to develop software for current smart-mobile devices such as phones and tablets.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 230 Software Engineering for Smart-Mobile Systems
Prerequisites: CSCE 130
Description: Practical experience on building larger scale applications and familiarity with the tools, environments (e.g., Android or iOS), and requirements to develop software for current smart-mobile devices such as phones and tablets.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 231 Software Engineering for Smart-Mobile Systems
Prerequisites: CSCE 131
Description: Practical experience on building larger scale applications and familiarity with the tools, environments (e.g., Android or iOS), and requirements to develop software for current smart-mobile devices such as phones and tablets.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
CSCE 230 Computer Organization
Crosslisted with: ECEN 230
Prerequisites: A grade of 'P' or 'C' or better in CSCE 235, CSCE 235H, or RAIK 184H.
Notes: Laboratories supplement the lecture material and give an opportunity to practice concepts.
Description: Introduction to organization and structure of computer systems. Boolean logic, digital arithmetic, processor organization, machine language programming, input/output, memory organization, system support software, communication, and ethics.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Offered: FALL
Prerequisite for: CSCE 336; CSCE 351, ECEN 351; ECEN 220; ECEN 370, CSCE 335
Course and Laboratory Fee: $20

CSCE 231 Computer Systems Engineering
Prerequisites: Grade of ‘P’ or ‘C’ or better in CSCE 235, CSCE 235H or RAIK 184H.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Prerequisite for: CSCE 336; CSCE 351, ECEN 351
Course and Laboratory Fee: $20

CSCE 235 Introduction to Discrete Structures
Prerequisites: A grade of ‘P’ or ‘C’ or better in CSCE 155A, CSCE 155E, CSCE 155H, CSCE 155N, CSCE 155T, SOFT 160, SOFT 160H or RAIK 183H; and MATH 106.
Notes: Theoretical concepts with programming assignments.
Description: Survey of elementary discrete mathematics. Elementary graph and tree theories, set theory, relations and functions, propositional and predicate logic, methods of proof, induction, recurrence relations, principles of counting, elementary combinatorics, and asymptotic notations.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 230, ECEN 230; CSCE 231; CSCE 310; CSCE 310H; SOFT 260
Course and Laboratory Fee: $20

CSCE 235H Honors: Introduction to Discrete Structures
Prerequisites: A grade of ‘P’ or ‘C’ or better in CSCE 155A, CSCE 155E, CSCE 155H, CSCE 155N, CSCE 155T, SOFT 160, SOFT 160H or RAIK 183H; and MATH 106.
Notes: Theoretical concepts with programming assignments. Covers the same topics as CSCE 235, but in greater depth.
Description: Survey of elementary discrete mathematics. Elementary graph and tree theories, set theory, relations and functions, propositional and predicate logic, methods of proof, induction, recurrence relations, principles of counting, elementary combinatorics, and asymptotic notations.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 230, ECEN 230; CSCE 231; CSCE 310; CSCE 310H; SOFT 260
Course and Laboratory Fee: $20

CSCE 251 Unix Programming Environment
Crosslisted with: ECEN 251
Notes: Familiarity with at least one high-level programming language.
Description: Introduction to the Unix operating system. Unix file system. Unix tools and utilities. Shell programming.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option
Offered: FALL
Course and Laboratory Fee: $20

CSCE 251H Honors: Unix Programming Environment
Prerequisites: Permission.
Notes: Will not count towards a major or minor in computer science and computer engineering. Topics vary.
Description: Aspects of computers and computing for non-computer science and computer engineering majors and/or minors.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option

CSCE 291 Special Topics in Computer Science
Prerequisites: Permission.
Description: Aspects of computers and computing for non-computer science and computer engineering majors and/or minors. Topics vary.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option

CSCE 292 Special Topics in Computer Science
Prerequisites: Permission.
Description: Aspects of computers and computing for non-computer science and computer engineering majors and/or minors. Topics vary.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option

CSCE 293 Independent Study in Computing
Prerequisites: Sophomore standing; permission of the instructor.
Description: Independent study of computer science topics performed under the guidance of a member of the faculty in the Department of Computer Science and Engineering.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 294 Independent Study in Computing
Prerequisites: Sophomore standing; permission of the instructor.
Description: Independent study of computer science topics performed under the guidance of a member of the faculty in the Department of Computer Science and Engineering.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
CSCE 310 Data Structures and Algorithms
Prerequisites: Grades of "Pass" or "C" or better in CSCE 156/156H or SOFT 161 and CSCE 235/235H.
Notes: Theoretical concepts with programming assignments.
Description: A review of algorithm analysis, asymptotic notation, and solving recurrence relations. Advanced data structures and their associated algorithms, heaps, priority queues, hash tables, trees, binary search trees, and graphs. Algorithmic techniques, divide and conquer, transform and conquer, space-time trade-offs, greedy algorithms, dynamic programming, randomization, and distributed algorithms. Introduction to computability and NP-completeness.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 311; CSCE 311H; CSCE 311; CSCE 361, CSCE 361H; CSCE 378, CSCE 378H; CSCE 386; CSCE 453H, CSCE 493
Course and Laboratory Fee: $20

CSCE 310H Honors: Data Structures and Algorithms
Prerequisites: Good Standing in UNL Honors Program or by invitation; grades of "P" or "C" or better in CSCE 156/156H or SOFT 161 and CSCE 235/235H.
Description: CSCE 310H covers the same topics as CSCE 310, but in greater depth. For course description, see CSCE 310.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Prerequisite for: CSCE 351, CSCE 360; CSCE 311; CSCE 493
Course and Laboratory Fee: $20

CSCE 311 Data Structures and Algorithms for Informatics
Prerequisites: Grade of "Pass" or "C" or better in CSCE 156A, CSCE 156E, CSCE 155H, CSCE 155N, CSCE 155T, CSCE 320, or SOFT 160.
Notes: CSE majors must take CSCE 310. Students may not receive credit for both CSCE 310 and 311.
Description: An introduction to algorithms and data structures for informatics. Foundational coverage of algorithms includes both problems (such as indexing, searching, sorting, and pattern matching) and methods (such as greedy, divide-and-conquer, and dynamic programming). Foundational coverage of data structures includes lists, tables, relational databases, regular expressions, trees, graphs, and multidimensional arrays. The topics will be studied in the context of informatics applications.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 322, CSCE 322H; CSCE 351, CSCE 351; CSCE 360; CSCE 361, CSCE 361H; CSCE 378; CSCE 378H; CSCE 386; CSCE 453H, RAIK 453H; CSCE 484; CSCE 493, CSCE 493A

CSCE 320 Data Analysis
Prerequisites: A grade of "P" or "C" or better in CSCE 120 or CSCE 220.
Notes: This course does not count towards a major or minor in Computer Science or a major in Computer Engineering or a major in Software Engineering. Third course in a sequence for the minor in Software Development.
Description: Practical experience on how to model data through existing techniques including object-oriented and relational models. These models can then be used at the center of systems to promote efficient and effective data processing and analysis.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 311; CSCE 493

CSCE 322 Programming Language Concepts
Prerequisites: A grade of "P" or "C" or better in CSCE 156, CSCE 156H, CSCE 311, SOFT 161, SOFT 161H, or RAIK 184H.
Description: List-processing, string-processing, and other types of high-level programming languages. Fundamental concepts of data types, control structures, operations, and programming environments of various programming languages. Analysis, formal specification, and comparison of language features.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Course and Laboratory Fee: $40

CSCE 322H Honors: Programming Language Concepts
Prerequisites: Good Standing in UNL Honors Program or by invitation; A grade of "P" or "C" or better in CSCE 156, CSCE 156H, CSCE 311, SOFT 161, SOFT 161H, or RAIK 184H.
Description: List-processing, string-processing, and other types of high-level programming languages. Fundamental concepts of data types, control structures, operations, and programming environments of various programming languages. Analysis, formal specification, and comparison of language features.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 335 Digital Logic Design
Crosslisted with: ECEN 370
Prerequisites: ECEN 103 or CSCE 230
Description: Combinational and sequential logic circuits. MSI chips, programmable logic devices (PAL, ROM, PLA) used to design combinational and sequential circuits. CAD tools. LSI and PLD components and their use. Hardware design experience.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Prerequisite for: ECEN 307; ECEN 494
CSCE 336 Embedded Systems
Prerequisites: A grade of "P" or "C" or better in CSCE 230 or CSCE 231.
Description: Introduction to designing, interfacing, configuring, and
programming embedded systems. Configure simple embedded
microprocessor systems, control peripherals, write device drivers in a
high-level language, set up embedded and real-time operating systems,
and develop applications for embedded systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 488; CSCE 488H
Course and Laboratory Fee: $40

CSCE 351 System Resource Management
Crosslisted with: ECEN 351
Prerequisites: A grade of "P" or "C" or better in CSCE 230 or CSCE 231 and
CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Description: An introduction to management of computing resources,
including CPUs, shared memory, I/O devices, address spaces, and threads
of execution, with a focus on implementation.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL
Course and Laboratory Fee: $40

CSCE 352 Exploring Virtual Reality
Prerequisites: CSCE 155A/155E/155T/155H, SOFT 160, RAIK 183H, or
equivalent.
Notes: Requires familiarity with a high-level programming language.
Description: Introduction to designing, developing and producing virtual
reality and immersive experiences. Work in interdisciplinary teams
to produce a virtual reality/immersive project, game or storytelling
experience.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 360 Software Security in Practice
Prerequisites: A grade of "P" or "C" or higher in CSCE 310, CSCE 310H,
CSCE 311, SOFT 260, SOFT 260H, or RAIK 283H
Description: Introduction to web application security risks and associated
mitigation strategies, along with cloud-based resource management, and
security basics on cloud application hosting.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 361 Software Engineering
Crosslisted with: CSCE 361H
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H,
CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Notes: Requires participation in a group design and implementation of a
software project.
Description: Techniques used in the disciplined development of large
software projects. Software requirements analysis and specifications,
program design, coding and integration testing, and software
maintenance. Software estimation techniques, design tools, and
complexity metrics.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL/SPR

CSCE 370H Honors: Data and Models II: Data Science Fundamentals
Crosslisted with: RAIK 370H
Prerequisites: Good standing in the University Honors Program or by
invitation; admission to the Jeffrey S. Raikes School of Computer Science
and Management; and RAIK 270H
Description: Introduction to approaches using data for prediction and
learning. Exploration of data for linear and nonlinear data modeling,
machine learning, and supportive methods from statistics and numerical
methods.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL/SPR
CSCE 378 Human-Computer Interaction
Prerequisites: A grade of "P" or "C" or better in CSCE 156, CSCE 156H, SOFT 161, SOFT 161H, RAIK 184H or CSCE 311.
Notes: STAT 380 or ECEN 305 recommended. Meeting ACE 1 and ACE 2 requirements prior to taking this course recommended.
Description: Knowledge and techniques useful in the design of computing systems for human use. Includes models of HCl, human information processing characteristics important in HCl, computer system features, such as input and output devices, dialogue techniques, and information presentation, task analysis, prototyping and the iterative design cycle, user interface implementation, interface evaluation.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Course and Laboratory Fee: $20

CSCE 378H Honors: Human-Computer Interaction
Prerequisites: Good standing in the University Honors Program; A grade of "P" or "C" or better in CSCE 156, CSCE 156H, SOFT 161, SOFT 161H, RAIK 184H or CSCE 311.
Notes: STAT 380/RAIK 270H or ECEN 305 recommended. Meeting ACE 1 and ACE 2 requirements prior to taking this course recommended.
Description: Knowledge and techniques useful in the design of computing systems for human use. Includes models of HCl, human information processing characteristics important in HCl, computer system features, such as input and output devices, dialogue techniques, and information presentation, task analysis, prototyping and the iterative design cycle, user interface implementation, interface evaluation.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 386 Practice and Professional Development: Design and Implementation
Prerequisites: Grade of "Pass" or "C" in CSCE 311.
Description: Studies in data science practice and professional development. Data science topics include data-centric and model-driven approaches; information and knowledge structures, organization, and access; searching and mining, and visualization. Professional development involves instruction in career development, entrepreneurship, professional ethics, and professional communications.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL

CSCE 391 Special Topics in Computer Science
Prerequisites: Permission.
Description: Aspects of computers and computing for computer science and computer engineering majors and/or minors. Topics vary.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option

CSCE 392 Special Topics in Computer Science
Prerequisites: Permission.
Description: Aspects of computers and computing for computer science and computer engineering majors and minors. Topics vary.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option

CSCE 399 Undergraduate Thesis
Prerequisites: Junior standing; permission of the instructor.
Description: Independent practice and research leading to a thesis.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded

CSCE 399H Honors Undergraduate Thesis
Prerequisites: Permission.
Description: Independent practice and research leading to a thesis.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded

CSCE 401H Honors: RAIK Design Studio I
Crosslisted with: RAIK 401H, BSAD 401H, SOFT 401H
Prerequisites: Good standing in the University Honors Program or by invitation; admission to the Jeffrey S. Raikes School of Computer Science and Management; RAIK 284H/SOFT 261H or equivalent.
Notes: First semester in the Jeffrey S. Raikes School of Computer Science and Management design studio
Description: Application of Raikes School core content in a team oriented, project management setting. Complete projects in consultation with private and public sector clients.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Offered: FALL
Prerequisite for: RAIK 402H, BSAD 402H, CSCE 402H, SOFT 402H
ACE: ACE 8 Civic/Ethics/Stewardship
Experiential Learning: Case/Project-Based Learning
CSCE 402H Honors: RAIK Design Studio II
Crosslisted with: RAIK 402H, BSAD 402H, SOFT 402H
Prerequisites: Good standing in the University Honors Program or by invitation; admission to the Jeffrey S. Raikes School of Computer Science and Management; BSAD/CSCE/SOFT/RAIK 401H.
Notes: Second semester in the Jeffrey S. Raikes School of Computer Science and Management design studio
Description: Application of Raikes School core content in a team oriented, project management setting. Complete projects in consultation with private and public sector clients.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Offered: SPRING
Prerequisite for: RAIK 403H, BSAD 403H, CSCE 403H
ACE: ACE 10 Integrated Product
Experiential Learning: Case/Project-Based Learning

CSCE 403H Honors: RAIK Design Studio III
Crosslisted with: RAIK 403H, BSAD 403H
Prerequisites: Good standing in the University Honors Program or by invitation; admission to the Jeffrey S. Raikes School of Computer Science and Management; BSAD/CSCE/SOFT/RAIK 402H.
Notes: Third semester of Jeffrey S. Raikes School of Computer Science and Management design studio sequence
Description: Application of Jeffrey S. Raikes School of Computer Science and Management core content in a team oriented, project management setting. Complete projects in consultation with private and public sector clients.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Prerequisite for: RAIK 404H, BSAD 404H, CSCE 404H
Experiential Learning: Case/Project-Based Learning

CSCE 404H Honors: RAIK Design Studio IV
Crosslisted with: RAIK 404H, BSAD 404H
Prerequisites: Good standing in the University Honors Program or by invitation; admission to the Jeffrey S. Raikes School of Computer Science and Management; BSAD/CSCE/SOFT/RAIK 403H.
Notes: Fourth semester in the Jeffrey S. Raikes School of Computer Science and Management design studio sequence
Description: Application of Raikes School core content in a team oriented, project management setting. Complete projects in consultation with private and public sector clients.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Experiential Learning: Case/Project-Based Learning

CSCE 405H Honors: RAIK Research Studio I
Crosslisted with: RAIK 405H
Prerequisites: Good standing in the University Honors Program or by invitation; admission to the Jeffrey S. Raikes School of Computer Science and Management; RAIK 284H/SOFT 261H or equivalent.
Notes: First semester of Jeffrey S. Raikes School of Computer Science and Management research studio experience. Students work individually with a sponsoring faculty member from the area of their research and Raikes School faculty.
Description: Application of research principles to solve complex problems through the delivery of innovative, cutting-edge solutions and to gain an understanding of the roles involved.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Offered: FALL
Prerequisite for: CSCE 406H, RAIK 406H

CSCE 406H Honors: RAIK Research Studio II
Crosslisted with: RAIK 406H
Prerequisites: RAIK 405H
Notes: Second semester of Jeffrey S. Raikes School of Computer Science and Management research studio experience. Students work individually with a sponsoring faculty member from the area of their research and Raikes School faculty.
Description: Application of research principles to solve complex problems through the delivery of innovative, cutting-edge solutions and to gain an understanding of the roles involved.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Offered: SPRING

CSCE 410 Information Retrieval Systems
Crosslisted with: CSCE 810
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAISK 283H
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING
CSCE 411 Data Modeling for Systems Development
Crosslisted with: CSCE 811
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Description: Concepts of relational and object-oriented data modeling through the process of data model development including conceptual, logical and physical modeling. Techniques for identifying and creating relationships between discrete data members, reasoning about how data modeling and analysis are incorporated in system design and development, and specification paradigms for data models. Common tools and technologies for engineering systems and frameworks for integrating data. Design and analysis of algorithms and techniques for identification and exploration of data relationships, such as Bayesian probability and statistics, clustering, map-reduce, and web-based visualization.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
CSCE 412 Data Visualization
Crosslisted with: CSCE 812
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H; MATH 314.
Description: Fundamentals and implementations of data visualization techniques. Programming skills and practices in interactive visualization applications. Visualization foundations, human perception for information processing, and visualization techniques for different data types, such as scalar-field data, vector-field data, geospatial data, multivariate data, graph/network data, and text/document data. Advanced visualization algorithms and topics as time permits.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL/SPR
CSCE 413 Database Systems
Crosslisted with: CSCE 813
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Notes: Involves practical experience with a working database system.
Description: Data and storage models for database systems; entity/relationship, relational, and constraint models; relational databases; relational algebra and calculus; structured query language; Logical database design: normalization; integrity; distributed data storage; concurrency; security issues. Spatial databases and geographic information systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 913; CSCE 914
Course and Laboratory Fee: $40

CSCE 421 Foundations of Constraint Processing
Crosslisted with: CSCE 821
Prerequisites: A grade of "P" or "C" or better in CSCE 235 and CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Description: Constraint processing for articulating and solving industrial problems such as design, scheduling, and resource allocation. The foundations of constraint satisfaction, its basic mechanisms (e.g., search, backtracking, and consistency-checking algorithms), and constraint programming languages. New directions in the field, such as strategies for decomposition and for symmetry identification.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 921
Course and Laboratory Fee: $10

CSCE 423 Design and Analysis of Algorithms
Crosslisted with: CSCE 823
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Description: Mathematical preliminaries. Strategies for algorithm design, including divide-and-conquer, greedy, dynamic programming and backtracking. Mathematical analysis of algorithms. Introduction to NP-Completeness theory, including the classes P and NP, polynomial transformations and NP-complete problems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 923; CSCE 924
Course and Laboratory Fee: $20

CSCE 424 Computational Complexity Theory
Crosslisted with: CSCE 824
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 425 Compiler Construction
Crosslisted with: CSCE 825
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Description: Review of program language structures, translation, loading, execution, and storage allocation. Compilation of simple expressions and statements. Organization of a compiler including compile-time and run-time symbol tables, lexical scan, syntax scan, object code generation, error diagnostics, object code optimization techniques, and overall design.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Course and Laboratory Fee: $20
<table>
<thead>
<tr>
<th>Course and Laboratory Fee</th>
<th>Grading Option</th>
<th>Max credits per degree</th>
<th>Max credits per semester</th>
<th>Course and Laboratory Fee</th>
<th>Credit Hours</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 428 Automata, Computation, and Formal Languages</td>
<td></td>
<td></td>
<td></td>
<td>$20</td>
<td>3</td>
<td>Crosslisted with: CSCE 828, Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H. Description: Introduction to the classical theory of computer science. Finite state automata and regular languages, minimization of automata. Context free languages and pushdown automata, Turing machines and other models of computation, undecidable problems, introduction to computational complexity. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3 Grading Option: Graded with Option.</td>
</tr>
<tr>
<td>CSCE 429 Information Theory</td>
<td></td>
<td></td>
<td></td>
<td>$20</td>
<td>3</td>
<td>Crosslisted with: CSCE 829, Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 270H. Description: Deals with the foundations of information theory, as well as the more practical aspects of information coding. Information measures are first introduced, and then applied to the analysis of the theoretical performance achievable in data compression and propagation over noisy channels. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3 Grading Option: Graded with Option. Offered: SPRING</td>
</tr>
<tr>
<td>CSCE 430 Computer Architecture</td>
<td></td>
<td></td>
<td></td>
<td>$20</td>
<td>3</td>
<td>Crosslisted with: CSCE 830, Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H; Coreq: STAT 380, ECEN 305 or RAIK 270H. Description: Architecture of single-processor (Von Neumann or SISD) computer systems. Evolution, design, implementation, and evaluation of state-of-the-art systems. Memory Systems, including interleaving, hierarchies, virtual memory and cache implementations; Communications and I/O, including bus architectures, arbitration, I/O processors and DMA channels; and Central Processor Architectures, including RISC and Stack machines, high-speed arithmetic, fetch/execute overlap, and parallelism in a single-processor system. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3 Grading Option: Graded with Option.</td>
</tr>
<tr>
<td>CSCE 431 Hardware and Software Acceleration for Machine Learning</td>
<td></td>
<td></td>
<td></td>
<td>$20</td>
<td>3</td>
<td>Crosslisted with: CSCE 831, Prerequisites: A grade of "P" or "C" or better in CSCE 230 or CSCE 231 and CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H. Description: Overview of the hardware and software acceleration techniques, including basics of deep learning, deep learning frameworks, hardware accelerators, co-optimization of algorithms and hardware, training and inference, support for state-of-the-art deep learning networks. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3 Grading Option: Graded with Option. Offered: FALL</td>
</tr>
<tr>
<td>CSCE 435 Cluster and Grid Computing</td>
<td></td>
<td></td>
<td></td>
<td>$20</td>
<td>3</td>
<td>Crosslisted with: CSCE 835, Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H, or RAIK 283H. Notes: Designed for CSCE and non-CSCE students who have an interest in building or programming clusters to enhance their computationally-intensive research. Description: Build and program clusters. Cluster construction, cluster administration, cluster programming, and grid computing. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3 Grading Option: Graded with Option. Offered: CSCE 436 Advanced Embedded Systems</td>
</tr>
<tr>
<td>CSCE 438 Internet of Things</td>
<td></td>
<td></td>
<td></td>
<td>$40</td>
<td>3</td>
<td>Crosslisted with: CSCE 838, Prerequisites: CSCE 230 or CSCE 231; SOFT 260, CSCE 310, CSCE 310H, CSCE 311 or equivalent; senior or graduate standing or instructor permission. Description: Theoretical and practical insight into the Internet of Things (IoT). Basics of IoT, including devices and sensors, connectivity, cloud processing and storage, analytics and machine learning, security, business models as well as advanced topics such as localization, synchronization, connected vehicles, and applications of IoT. Includes a group project that provides hands-on interaction with IoT. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3 Grading Option: Graded with Option. Course and Laboratory Fee: $20</td>
</tr>
</tbody>
</table>
CSCE 439 Robotics: Algorithms and Applications
Crosslisted with: CSCE 839
Prerequisites: A grade of "P" or "C" or better in CSCE 231, CSCE 336 or ECEN 220 and CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H
Description: Fundamental theory and algorithms for real world robot systems. Design and build a robot platform and implement algorithms in C++ or other high level languages. Topics include: open and closed loop control, reactive control, localization, navigation, path planning, obstacle avoidance, dynamics, kinematics, manipulation and grasping, sensing, robot vision processing, and data fusion.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL/SPR
Course and Laboratory Fee: $50

CSCE 440 Numerical Analysis I
Crosslisted with: CSCE 840, MATH 440, MATH 840
Prerequisites: CSCE 155A, CSCE 155E, CSCE 155H, CSCE 155N, CSCE 155T, or SOFT 160; MATH 107.
Notes: Credit toward the degree may be earned in only one of the following: CSCE/MATH 440/840 and MECH 480/880.
Description: Principles of numerical computing and error analysis covering numerical error, root finding, systems of equations, interpolation, numerical differentiation and integration, and differential equations. Modeling real-world engineering problems on digital computers. Effects of floating point arithmetic.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 942
Course and Laboratory Fee: $20

CSCE 443 Cybersecurity for Big Data, Cloud and Cryptocurrencies
Crosslisted with: CSCE 843
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Notes: Labs will be conducted on academic cloud and compute environments as well as public clouds.
Description: Covers the cybersecurity threat landscape and the mitigation strategies for Big Data, Cloud environments and Cryptocurrencies. Discusses emerging technologies and frameworks such as End-to-end encryption, Blockchains, Smart Contracts, OpenID Connect and OAuth2.0 as promising solutions to ensure data confidentiality and privacy.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL

CSCE 445 Eye Tracking in Usability and Software Engineering
Crosslisted with: CSCE 845
Prerequisites: SOFT 261 or CSCE 361.
Description: Create and evaluate new and existing human computer interfaces in the context of software engineering. Interdisciplinary applications of eye tracking in various areas of software engineering, biometrics, and psychology among others will be presented. Learn how to design, conduct, and analyze a technically sound eye tracking empirical study for software engineering problems in a group setting.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING

CSCE 451 Operating Systems Principles
Crosslisted with: CSCE 851
Prerequisites: A grade of "P" or "C" or better in CSCE 230 or CSCE 231 and CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 455, CSCE 855
Course and Laboratory Fee: $20

CSCE 453H Honors: User Interfaces
Crosslisted with: RAIK 453H
Prerequisites: A grade of "P" or "C+" or higher in CSCE 156, CSCE 156H, CSCE 220, CSCE 311, RAIK 184H, SOFT 161, or SOFT 161H. Good standing in the University Honors Program.
Notes: Enrolled students are expected to have advanced communication skills and a high commitment to conscientiousness. Students who are not in the University Honors Program but nonetheless meet these requirements may request permission of the instructor to enroll. Meeting ACE1 and ACE2 requirements prior to taking this course is recommended.
Description: Introduction to the areas of user interfaces and user experience through reading and hands-on experiences. Areas covered include the psychology and physiology of design, the process of interface design, cultural values and accessibility, designing for beauty and delight, and dynamic evaluation strategies.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
CSCE 454 Human-Robot Interaction
Crosslisted with: CSCE 854
Prerequisites: A grade of "P" or "C" or better in CSCE 156, CSCE 156H, SOFT 161, SOFT 161H, RA IK 184H or CSCE 311.
Notes: Meeting ACE1 and ACE2 requirements prior to taking this course is recommended. Non-CSCE majors may discuss qualifications with the instructor.
Description: Introduction to the area of human-robot interaction through the reading and discussion of current peer-reviewed articles on topics to include teleoperation, social robotics, and open questions with field-based or aerial robotic systems. Areas covered include: research methods, experimental design, and identification of problems/open questions.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL/SPR

CSCE 455 Distributed Operating Systems
Crosslisted with: CSCE 855
Prerequisites: CSCE 451/851.
Description: Organization and structure of distributed operating systems. Control, communication and synchronization of concurrent processes in the context of distributed systems. Processor allocation and scheduling. Deadlock avoidance, detection, recovery in distributed systems. Fault tolerance. Distributed file system concepts and structure.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CHME 496, CHME 896
Course and Laboratory Fee: $20

CSCE 456 Parallel Programming
Crosslisted with: CSCE 856
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RA IK 283H.
Description: Introduction to the fundamentals of parallel computation and applied algorithm design. Methods and models of modern parallel computation; general techniques for designing efficient parallel algorithms for distributed and shared memory multiprocessor machines; principles and practice in programming an existing parallel machine.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Course and Laboratory Fee: $10

CSCE 457 Systems Administration
Crosslisted with: CSCE 857
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RA IK 283H.
Description: Introduction to basic concepts of system administration. Operating systems and networking overview. User and resource management. Networking, systems and internet related security. System services and common applications, web services, database services, and mail servers. Basic scripting in shell, Perl, and Expect. Systems administration on UNIX® platform.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 458 Molecular and Nanoscale Communication
Crosslisted with: CSCE 858
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RA IK 283H; STAT 380, ECEN 305 or RA IK 270H.
Notes: Completing CSCE 462/862 and CSCE 465/865 prior to taking this course is recommended. Exceptions can be granted on a per-student basis by the instructor.
Description: Overview of nanoscale communication options. Focus on bio-inspired communication through molecule exchange and biochemical reactions. Different techniques to realize nanomachines will be surveyed in the course, with particular attention to the tools provided by synthetic biology for the programming of biological cooperative systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 459 Genetically Engineered Systems
Crosslisted with: CSCE 859
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RA IK 283H; STAT 380, ECEN 305 or RA IK 270H.
Notes: Completing CSCE/MATH 440/840, MATH 439/839, and CSCE 471/871 prior to taking this course is recommended. Exceptions can be granted on a per-student basis by the instructor. Meeting ACE 1 and ACE 2 requirements prior to taking this course is recommended. Non-CSCE majors may discuss qualifications with the instructor.
Description: Introduction to the field of synthetic biology, and its interdisciplinary foundational concepts. Presents the technologies at the basis of synthetic biology, together with the engineering concepts that underlie the design, modeling, and realization of genetically engineered systems. Surveys examples of cutting edge applications.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL/SPR

CSCE 460 Software Engineering for Robotics
Crosslisted with: SOFT 460, CSCE 860
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RA IK 283H; STAT 380, ECEN 305 or RA IK 270H.
Description: Application of software engineering practices and principles to autonomous robotic systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL/SPR

CSCE 461 Advanced Topics in Software Engineering
Crosslisted with: CSCE 861, SOFT 461
Prerequisites: A grade of "P" or "C" or better in CSCE 361, CSCE 361H, SOFT 261, SOFT 261H or RA IK 284H.
Description: Advanced or emerging techniques in software engineering. Topics include but not limited to design methodology, software dependability, and advanced software development environments.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
CSCE 462 Communication Networks
Crosslisted with: CSCE 862
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H; STAT 380, ECEN 305 or RAIK 270H.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 952; CSCE 953
Course and Laboratory Fee: $20

CSCE 463 Data and Network Security
Crosslisted with: CSCE 863, ECEN 487, ECEN 887
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Description: Concepts and principles of data and network security. Focuses on practical aspects and application of crypto systems in security protocols for networks such as the Internet. Topics include: applications of cryptography and cryptosystems for digital signatures, authentication, network security protocols for wired and wireless networks, cyberattacks and countermeasures, and security in modern computing platforms.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 952; CSCE 953

CSCE 464 Internet Systems and Programming
Crosslisted with: CSCE 864
Prerequisites: A grade of "Pass" or C or better in CSCE 156, SOFT 161, RAIK 184H or CSCE 311 or equivalent programming experience.
Notes: A grade of "Pass" or C or better in CSCE 156, SOFT 161, RAIK 184H or CSCE 311 or equivalent programming experience.
Description: Paradigms, systems, and languages for Internet applications. Client-side and server-side programming, object-based and event-based distributed programming, and multi-tier applications. Coverage of specific technologies varies.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 465 Wireless Communication Networks
Crosslisted with: CSCE 865
Prerequisites: A grade of "P" or "C" or better in STAT 380, ECEN 305 or RAIK 270H.
Description: Discussion of theoretical and practical insight to wireless communications and wireless networking, current practices, and future trends. Wireless network architectures, mobility management, radio propagation, modulation, power control, antennas, channel access, pricing, and standards.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 954

CSCE 466 Software Design and Architecture
Crosslisted with: SOFT 466, CSCE 866
Prerequisites: A grade of "P" or "C" or better in CSCE 361, CSCE 361H, SOFT 261, SOFT 261H or RAIK 284H.
Notes: Letter grade only.
Description: Introduction to the concepts, principles, and state-of-the-art methods in software design and architecture. Topics include application of software engineering process models and management approaches for the design and architecture of large-scale software systems, trade-offs of designing for qualities such as performance, security, and dependability, and techniques and tools for analyzing and evaluating software architectures.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded

CSCE 467 Testing, Verification and Analysis
Crosslisted with: SOFT 467, CSCE 867
Prerequisites: A grade of "P" or "C" or better in CSCE 361, CSCE 361H, SOFT 261, SOFT 261H or RAIK 284H.
Notes: Letter grade only.
Description: In-depth coverage of problems related to software quality, and approaches for addressing them. Topics include testing techniques, dynamic and static program analysis techniques, and other approaches for verifying software qualities. Tool support for performing testing, verification, and analysis will also be studied.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Course and Laboratory Fee: $20
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Crosslisted with</th>
<th>Prerequisites</th>
<th>Notes</th>
<th>Description</th>
<th>Credit Hours</th>
<th>Max credits per semester</th>
<th>Max credits per degree</th>
<th>Grading Option</th>
<th>Course and Laboratory Fee</th>
<th>Credit Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 468</td>
<td>Requirements Elicitation, Modeling and Analysis</td>
<td></td>
<td>Provided by: CSCE 468, CSCE 868</td>
<td></td>
<td>In-depth coverage of processes, methods and techniques for determining, or deciding, what a proposed software system should do. Topics include the requirements engineering process, identification of stakeholders, requirements elicitation techniques, methods for informal and formal requirements documentation, techniques for analyzing requirements models for consistency and completeness, and traceability of requirements across system development and evolution. Tool support for modeling functional and non-functional requirements to support elicitation and analysis will be studied.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td>$20</td>
<td>Graded with Option</td>
</tr>
<tr>
<td>CSCE 469</td>
<td>Secure Software Engineering</td>
<td></td>
<td>Provided by: CSCE 469, CSCE 869</td>
<td></td>
<td>In-depth coverage of processes, methods and techniques for determining, or deciding, what a proposed software system should do. Topics include the requirements engineering process, identification of stakeholders, requirements elicitation techniques, methods for informal and formal requirements documentation, techniques for analyzing requirements models for consistency and completeness, and traceability of requirements across system development and evolution. Tool support for modeling functional and non-functional requirements to support elicitation and analysis will be studied.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td>$20</td>
<td>Graded with Option</td>
</tr>
<tr>
<td>CSCE 470</td>
<td>Computer Graphics</td>
<td></td>
<td>Provided by: CSCE 470, CSCE 870</td>
<td></td>
<td>In-depth coverage of processes, methods and techniques for determining, or deciding, what a proposed software system should do. Topics include the requirements engineering process, identification of stakeholders, requirements elicitation techniques, methods for informal and formal requirements documentation, techniques for analyzing requirements models for consistency and completeness, and traceability of requirements across system development and evolution. Tool support for modeling functional and non-functional requirements to support elicitation and analysis will be studied.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td>$20</td>
<td>Graded with Option</td>
</tr>
<tr>
<td>CSCE 472</td>
<td>Digital Image Processing</td>
<td></td>
<td>Provided by: CSCE 472, CSCE 872</td>
<td></td>
<td>In-depth coverage of processes, methods and techniques for determining, or deciding, what a proposed software system should do. Topics include the requirements engineering process, identification of stakeholders, requirements elicitation techniques, methods for informal and formal requirements documentation, techniques for analyzing requirements models for consistency and completeness, and traceability of requirements across system development and evolution. Tool support for modeling functional and non-functional requirements to support elicitation and analysis will be studied.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td>$20</td>
<td>Graded with Option</td>
</tr>
<tr>
<td>CSCE 473</td>
<td>Computer Vision</td>
<td></td>
<td>Provided by: CSCE 473, CSCE 873</td>
<td></td>
<td>In-depth coverage of processes, methods and techniques for determining, or deciding, what a proposed software system should do. Topics include the requirements engineering process, identification of stakeholders, requirements elicitation techniques, methods for informal and formal requirements documentation, techniques for analyzing requirements models for consistency and completeness, and traceability of requirements across system development and evolution. Tool support for modeling functional and non-functional requirements to support elicitation and analysis will be studied.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td>$20</td>
<td>Graded with Option</td>
</tr>
<tr>
<td>CSCE 474</td>
<td>Introduction to Data Mining</td>
<td></td>
<td>Provided by: CSCE 474, CSCE 874</td>
<td></td>
<td>In-depth coverage of processes, methods and techniques for determining, or deciding, what a proposed software system should do. Topics include the requirements engineering process, identification of stakeholders, requirements elicitation techniques, methods for informal and formal requirements documentation, techniques for analyzing requirements models for consistency and completeness, and traceability of requirements across system development and evolution. Tool support for modeling functional and non-functional requirements to support elicitation and analysis will be studied.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td>$20</td>
<td>Graded with Option</td>
</tr>
</tbody>
</table>
CSCE 475 Multiagent Systems
Crosslisted with: CSCE 875
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Description: Distributed problem solving and planning, search algorithms for agents, distributed rational decision making, learning multiagent systems, computational organization theory, formal methods in Distributed Artificial Intelligence, multiagent negotiations, emergent behaviors (such as ants and swarms), and Robocup technologies and real-time coalition formation.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 476 Introduction to Artificial Intelligence
Crosslisted with: CSCE 876
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Description: Introduction to basic principles, techniques, and tools now being used in the area of machine intelligence. Languages for AI programming introduced with emphasis on LISP. Lecture topics include problem solving, search, game playing, knowledge representation, expert systems, and applications.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 976
Course and Laboratory Fee: $40

CSCE 477 Cryptography and Computer Security
Crosslisted with: CSCE 877
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H; MATH 314.
Description: Introductory course on cryptography and computer security. Topics: classical cryptography (substitution, Vigenere, Hill and permutation ciphers, and the one-time pad); Block ciphers and stream ciphers; The Data Encryption Standard; Public-key cryptography, including RSA and El-Gamal systems; Signature schemes, including the Digital Signature Standard; Key exchange, key management and identification protocols.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Course and Laboratory Fee: $35

CSCE 478 Introduction to Machine Learning
Crosslisted with: CSCE 878
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Notes: STAT 380, ECEN 305, or RAIK 270H recommended.
Description: Introduction to the fundamentals and current trends in machine learning. Possible applications for game playing, text categorization, speech recognition, automatic system control, data mining, computational biology, and robotics. Theoretical and empirical analyses of decision trees, artificial neural networks, Bayesian classifiers, genetic algorithms, instance-based classifiers and reinforcement learning.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CSCE 479 Introduction to Deep Learning
Crosslisted with: CSCE 879
Prerequisites: A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIK 283H.
Notes: Completing STAT 380/RAIK 270H or ECEN 305 prior to taking this course is recommended.
Description: Fundamentals and current trends in deep learning. Backpropagation, activation functions, loss functions, choosing an optimizer, and regularization. Common architectures such as convolutional, autoencoders, and recurrent. Applications such as image analysis, text analysis, sequence analysis, and reinforcement learning.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING
Course and Laboratory Fee: $50

CSCE 484 Data Science Professional Development
Prerequisites: CSCE 311
Description: Preparation for the senior design project. Professional practice through familiarity with current tools, resources, and technologies. Professional standards, practices and ethics, and the oral and written report styles used specifically in the field of data science.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL
CSCE 486 Computer Science Professional Development
Prerequisites: A grade of "Pass" or "C" or better in SOFT 261, SOFT 261H, CSCE 361, or CSCE 361H. JGEN 200.
Notes: Must be taken exactly one semester before CSCE 487 or CSCE 487H.
Description: Preparation for the senior design project. Professional practice through familiarity with current tools, resources, and technologies. Professional standards, practices and ethics, and the oral and written report styles used specifically in the field of computer science.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 487; CSCE 487H
ACE: 8 Civic/Ethics/Stewardship
Course and Laboratory Fee: $10
Experiential Learning: Case/Project-Based Learning

CSCE 486H Honors Computer Science Professional Development
Prerequisites: A grade of "Pass" or "C" or better in SOFT 261, SOFT 261H, CSCE 361, or CSCE 361H. JGEN 200.
Notes: Must be taken exactly one semester before CSCE 487 or CSCE 487H.
Description: Preparation for the senior design project. Professional practice through familiarity with current tools, resources, and technologies. Professional standards, practices and ethics, and the oral and written report styles used specifically in the field of computer science.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 487H
ACE: 8 Civic/Ethics/Stewardship
Experiential Learning: Case/Project-Based Learning

CSCE 487 Computer Science Senior Design Project
Prerequisites: CSCE 486
Notes: Should be taken in the immediate next term after CSCE 486.
Description: A substantial computer science project requiring design, planning and scheduling, teamwork, written and oral communications, and the integration and application of technical and analytical aspects of computer science and software engineering.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: SOFT 403; SOFT 403H
ACE: 10 Integrated Product
Course and Laboratory Fee: $40
Experiential Learning: Case/Project-Based Learning

CSCE 487H Honors Computer Science Senior Design Project
Prerequisites: CSCE 486 or CSCE 486H.
Notes: Should be taken in the immediate next term after CSCE 486 or CSCE 486H.
Description: A substantial computer science project requiring design, planning and scheduling, teamwork, written and oral communications, and the integration and application of technical and analytical aspects of computer science and software engineering.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL
Prerequisite for: SOFT 403H
ACE: 10 Integrated Product
Experiential Learning: Case/Project-Based Learning

CSCE 488 Computer Engineering Professional Development
Prerequisites: CSCE 336; A grade of "Pass" or "C" or better in CSCE 361 or CSCE 361H; formal admission to the College of Engineering; prereq or coreq: JGEN 300.
Notes: Must be taken exactly one semester before CSCE 489 or CSCE 489H.
Description: Preparation for the senior design project. Professional practice through familiarity and practice with current tools, resources, and technologies; professional standards, practices, and ethics; and oral and written report styles used in the computer engineering field.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 489; CSCE 489H
ACE: 10 Integrated Product
Course and Laboratory Fee: $10
Experiential Learning: Case/Project-Based Learning

CSCE 488H Honors Computer Engineering Professional Development
Prerequisites: CSCE 336; A grade of "Pass" or "C" or better in CSCE 361 or CSCE 361H; formal admission to the College of Engineering; prereq or coreq: JGEN 300.
Notes: Must be taken exactly one semester before CSCE 489 or CSCE 489H.
Description: Preparation for the senior design project. Professional practice through familiarity and practice with current tools, resources, and technologies; professional standards, practices, and ethics; and oral and written report styles used in the computer engineering field.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL
Prerequisite for: CSCE 489H
ACE: 10 Integrated Product
Experiential Learning: Case/Project-Based Learning
CSCE 489 Computer Engineering Senior Design Project
Prerequisites: CSCE 488 (taken exactly one semester previous).
Description: A substantial computer engineering project requiring hardware-software co-design, planning and scheduling, teamwork, written and oral communications, and the integration and application of technical and analytical aspects of computer science and computer engineering.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 10 Integrated Product
Course and Laboratory Fee: $40
Experiential Learning: Case/Project-Based Learning
CSCE 489H Honors Computer Engineering Senior Design Project
Prerequisites: CSCE 488 or CSCE 488H (taken exactly one semester previous).
Description: A substantial computer engineering project requiring hardware-software co-design, planning and scheduling, teamwork, written and oral communications, and the integration and application of technical and analytical aspects of computer science and computer engineering.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING
ACE: ACE 10 Integrated Product
Experiential Learning: Case/Project-Based Learning
CSCE 492 Special Topics in Computer Science
Crosslisted with: CSCE 892
Prerequisites: CSCE 310/310H, CSCE 311, SOFT 260/260H/RAIK 283H, or graduate standing.
Description: Aspects of computers and computing not covered elsewhere in the curriculum presented as the need arises.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option
Course and Laboratory Fee: $40
Experiential Learning: Internship/Co-op
CSCE 492H Honors Special Topics in Computer Science
Prerequisites: Permission.
Description: Topics vary
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option
CSCE 493 Innovation Lab Project
Prerequisites: CSCE 310, CSCE 310H, CSCE 311, or CSCE 320
Description: Innovative team projects executed under the guidance of members of the faculty of the Department of Computer Science and Managing Director of the CSCE Innovation Lab. Students will work in teams and collaborate with CSE research faculty, supervising MS students, and sponsors that include private sectors and UNL faculty to design and develop real-world systems.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option
Experiential Learning: Case/Project-Based Learning
CSCE 493A Interdisciplinary Capstone
Prerequisites: CSCE 311
Notes: Does not apply toward any requirements for the Computer Science or Computer Engineering degree. Required for the Informatics minor.
Description: Innovative team projects executed under the guidance of members of the faculty of the Department of Computer Science and Managing Director of the CSCE Innovation Lab. Work in teams and collaboration with CSE research faculty and sponsors that include private sectors and UNL faculty to design and develop real-world systems to solve interdisciplinary problems.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded
Experiential Learning: Case/Project-Based Learning
CSCE 495 Internship in Computing Practice
Prerequisites: Permission.
Notes: Requires a detailed project proposal and final report.
Description: Experiential learning in conjunction with an approved industrial or government agency under the joint supervision of an outside sponsor and a faculty advisor.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option
Experiential Learning: Internship/Co-op
CSCE 498 Computer Problems
Crosslisted with: CSCE 898
Prerequisites: Senior or graduate standing.
Description: Independent project executed under the guidance of a member of the faculty of the School of Computing. Solution and documentation of a computer problem demanding a thorough knowledge of either the numerical or nonnumerical aspects of computer science.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Grading Option: Graded with Option

Career Information
The following represents a sample of the internships, jobs and graduate school programs that current students and recent graduates have reported.
Jobs of Recent Graduates

- Electronics Engineer, National Air and Space Intelligence Center - Dayton, OH
- Design Engineer, Garmin - Olathe, KS
- Jr. Project Engineer, Union Pacific - Omaha, NE
- Product Manager, Hudl - Lincoln, NE
- Embedded Systems Engineer, Lockheed Martin - Denver, CO
- Software Developer, IBM - Rochester, MN
- Computer Engineer, United States Department of Defense - San Antonio, TX
- Software Developer in Test, Amazon - Seattle, WA
- Software Developer Engineer, Microsoft - Seattle, WA
- System Integration Specialist, Sandhills Publishing - Lincoln, NE
- Software Engineer, Target Headquarters - Minneapolis, MN
- Software Design Engineer, Communication System Solutions - Lincoln, NE
- Embedded Software Engineer I, Northrop Grumman - San Diego, CA
- Junior Applications Developer, BuilderTrend - Omaha, NE
- Senior Managing Consultant, IBM - Austin, TX
- Controls Engineer, Anderson Industrial Engines - Omaha, NE
- Frontend Engineer, Hayneedle, Inc. - Omaha, NE
- Software Engineer, Cerner Corporation - Kansas City, MO
- Senior IT Infrastructure Support Analyst, State of Nebraska - Lincoln, NE
- Design Engineer & Project Manager, Li-COR Biosciences - Lincoln, NE
- Software Developer, Epic Systems - Verona, WI
- Application Developer II, BuilderTrend, Inc. - Omaha, NE
- Electronic Engineer, United States Department of Defense - Bedford, MA
- Software Developer, Spreetail - Lincoln, NE
- Firmware Design Engineer, Fisher Controls - Marshalltown, IA
- Software Development, National Strategic Research Institute - Omaha, NE
- Research Assistant, University of Alabama - Tuscaloosa, AL
- App Development Intern, Farm Credit Services of America - Omaha, NE
- System Application Developer Intern, Gallup - Lincoln, NE
- Quality Engineer Intern, Bosch Security Systems - Lincoln, NE
- Intern, Machine Solutions, Inc. - Flagstaff, AZ
- Software Developer Intern, Molex - Lincoln, NE
- Intern, Tesla Motors - Fremont, CA

Internships

- System Intern, Sandhills Publishing - Lincoln, NE
- Aviation Software Engineer, Garmin - Olathe, KS
- Software Engineer Intern, Microsoft - Redmond, WA
- Simulation Lab Intern, University of Nebraska Medical Center - Omaha, NE
- Hardware Engineer, Springbok Inc. - Omaha, NE
- Software Development Intern, Epic Systems - Madison, WI
- Software Engineering Intern, Firespring - Lincoln, NE
- Applications Developer Intern, Gallup - Omaha, NE
- Design Engineering Intern, Communication Systems Solutions - Lincoln, NE
- Network Design Intern, Union Pacific - Omaha, NE
- TTS Intern, Target - Minneapolis, MN
- Cyber Security Notification System (CYNOT), Nebraska Public Power District-Cooper Nuclear - Brownville, NE
- Quality Engineer Intern, Bosch Security Systems - Lincoln, NE
- Creative Consultant, UNL Information and Technology Services - Lincoln, NE
- Software Development Intern, Cerner - Kansas City, MO
- Software Quality Analyst Intern, Hudl - Lincoln, NE
- Research Student, Illinois Institute of Technology - Chicago, IL
- Master’s in Electrical Engineering, University of Nebraska-Lincoln - Lincoln, NE
- Ph.D., Electrical Engineering, University of California - Los Angeles, CA
- Master’s in Software Engineering, University of Sheffield - Sheffield, Great Britain
- Master’s in Visualization, Texas A&M University - College Station, TX
- Ph.D., Computer Science, University of Colorado - Boulder, CO
- Master’s in Information Technology, University of Texas - Austin, TX
- Medical Sciences Interdepartmental Areas, University of Nebraska Medical Center - Omaha, NE
- Master’s in Computer Science, University of Nebraska-Lincoln - Lincoln, NE
- Master’s in Mathematics, University of Nebraska Omaha - Omaha, NE