COMPUTER ENGINEERING (OMAHA)

Description
Website: engineering.unl.edu/ece (http://engineering.unl.edu/ceen)

The computer engineering program is administered by the Department of Electrical and Computer Engineering, and the bachelor of science degree program is accredited by the Engineering Accreditation Commission (EAC) of ABET, http://www.abet.org.

Mission
The mission of the Department of Electrical and Computer Engineering (ECE) programs on the Scott Campus (in Omaha) at the University of Nebraska is to develop and maintain programs of excellence in teaching and research which meet the educational needs of its constituents, which will support the state of Nebraska in its development as a leading center for high-technology computer/electronics/telecommunications industry and which will support national needs for well-educated ECE professionals.

Program Educational Objectives
The Program Educational Objectives (PEOs) for the computer engineering program are a statement of what its graduates are doing or are capable of doing three to five years after graduation. The students in the computer engineering program receive a strong foundation in engineering science and design that not only enables them to pursue productive careers in the computer engineering field but also in other areas such as business, management, and medicine. Typical industries in which computer engineering graduates are employed include microprocessor/embedded system design, digital design, hardware/software integration, and computer architecture and parallel processing.

The Program Educational Objectives for the computer engineering program are that graduates will be:

1. Employed in business, academia, or government.
2. Successful engineers who have established productive careers in their field and have contributed to improve and provide innovative and effective solutions in computer engineering or related fields.
3. Demonstrating technical and decision-making processes and the human interactions necessary to produce viable, responsible, and sustainable technological solutions.
4. Engaging in lifelong learning, which may include postgraduate education, to successfully adapt to technological, industry specific, and cultural changes and to foster adept functioning in society.
5. Performing engineering practice in a context that reflects awareness of the ethics of their profession and of the impacts of their work on the profession and society at large.

These Program Educational Objectives were developed with input from the program’s educational objectives constituency consisting of employers (including ECE Industry Advisory Board), graduates of the program, and faculty of the department.

Admission
General Requirements
Requirements for admission to the computer engineering program are that the student has:

- Maintained a cumulative GPA of at least 2.4 and is in good standing in the College of Engineering.
- Completed ECEN 213 Electrical Circuits I and ECEN 313 Switching Circuits Theory with a grade of C or better.

A transfer student will be admitted if he/she has:

- Completed courses equivalent to ECEN 213 and ECEN 313 at other institutions with acceptable transfer grades of C or better.
- Earned a GPA of 2.4 or better during their first 12 credit hours in computer engineering coursework at the University of Nebraska–Lincoln.

Transfer students will be able to appeal to the advisors for admission if they fail to meet the GPA requirement for an additional semester.

Advisement
Upon entry into the program, each student will be assigned a faculty academic advisor. It is required that the student meets with the advisor prior to each class registration period and that all courses to be applied toward the degree be selected with the advice and approval of the advisor. Students are expected to have their academic records reviewed and obtain approval from the department prior to application to the University registrar for award of the degree in order to ensure that all curricular requirements will be satisfied by the time of intended graduation.

Curriculum
Because of the rapid developments in the field of computer engineering, the curricular requirements are continually reviewed and upgraded to reflect technological advances. Curricular sequence and course descriptions contained herein are intended to serve as general guidelines. Contact the department for information on any changes to the requirements that are currently in effect but not listed in this catalog. Currently enrolled students are expected to modify their programs to take advantage of such revisions. Students who do not maintain continuous progress toward the degree through enrollment in applicable coursework will be considered as new students upon reentering the computer or electronics engineering curricular sequence and will be subject to the requirements of the curriculum current at the time of their reentry. Certain courses may not be valid as prerequisites or as credit toward the degree after two academic years; the student’s academic advisor should be consulted regarding applicability.

The department maintains a high standard of excellence in meeting its objective of providing the student with extensive experience in the fields of computer engineering and electronics engineering. The development of both hardware and software and the knowledge of the interrelationship of these areas is enhanced through the extensive use of laboratory equipment. The applicable University catalogs and College academic policies must be followed to ensure that the student satisfies the campus general education requirements.

Capstone
The capstone requirement provides a unique and challenging opportunity for the undergraduate student to demonstrate his/her ability to apply the knowledge gained in the coursework sequence to the planning,
design, execution, testing, and reporting of a significant project in the applications of engineering principles. The initiative and responsibility expected of the student executing the senior thesis parallel the expectations of the employer of the program graduate.

Electives

Electrical and Computer Engineering (ECEN) courses that are described in the catalog but are not shown as requirements in the semester sequences are offered as the need arises to provide co-interest areas wherein the students may broaden their background in the applications of computer engineering or electrical engineering. In addition, appropriate specified technical electives will be selected to augment the student’s particular area of interest. The applicability of transfer coursework with engineering content toward credit in the curriculum is determined on a case-by-case basis by the department.

Special Interest Areas

Opportunities are provided for the development of areas of special interest through enrollment in the Individual Study in Computer and Electronics Engineering courses which are offered at the freshman through senior level for the student who may wish to develop a topic under the guidance of a department faculty member. Enrollment is by permission after approval of a written proposal. Special Topics in Computer and Electronics Engineering classes also are offered by the department as the need arises to cover topics needing emphasis as a result of the rapidly-developing fields of computer engineering and electronics engineering. Academic advisors should be consulted regarding the particular topics to be covered and the necessary prerequisites for each offering of this course.

Students who expect to continue their education at the graduate level after the award of the baccalaureate degree should consult their advisor regarding course selections that would enhance that objective.

Students are encouraged to develop their professional and leadership potential through participation in student chapters of related professional organizations and in University extracurricular activities. Participation in the University Honors Program is encouraged for those who qualify.

College Requirements

College Admission

College Entrance Requirements

Students must have high school credit for (one unit is equal to one high school year):

1. Mathematics – 4 units: 2 of algebra, 1 of geometry, and 1 of precalculus and trigonometry
2. English – 4 units
3. Natural sciences – 3 units that must include 1 unit of physics and 1 unit of chemistry (chemistry requirement waived for students in construction management)
4. Foreign language – 2 units of a single foreign language
5. Social studies – 3 units
6. Students having a composite ACT score of 28 or greater (or equivalent SAT score) will be admitted to the College of Engineering even if they lack any one of the following: trigonometry, chemistry, or physics.
7. Students having an ACT score of 19 or less in English (or equivalent SAT score) must take ENGL 150 Writing and Inquiry or ENGL 151 Writing and Argument.

A total of 16 units is required for admission.

Students must have an ACT (enhanced) score of 24 or greater (or equivalent SAT). Students who lack entrance requirements may be admitted based on ACT scores, high school rank and credits, or may be admitted to pre-engineering status in the Exploratory and Pre-Professional Advising Center. Pre-engineering students are advised within the Exploratory and Pre-Professional Advising Center.

Students for whom English is not their language of nurture must meet the minimum English proficiency requirements of the University.

Students who lack entrance units may complete precollege training by Independent Study through the University of Nebraska–Lincoln Office of On-line and Distance Education, in summer courses, or as a part of their first or second semester course loads while in the Exploratory and Pre-Professional Advising Center or other Colleges at Nebraska.

Students should consult their advisor, their department chair, or Engineering Student Services if they have questions on current policies.

Other Admission Requirements

Students who transfer to the University of Nebraska–Lincoln from other accredited colleges or universities and wish to be admitted to the College of Engineering (COE) must meet COE freshman entrance requirements and have a minimum cumulative GPA of 2.5 and be calculus-ready. Students not meeting either of these requirements must enroll in the Explore Center or another University college until they meet COE admission requirements. Students transferring from UNO, UNL, or UNK to the College of Engineering must be in good academic standing with their institution.

The COE accepts courses for transfer for which a C or better grade was received. Although the University of Nebraska–Lincoln accepts D grades from the University of Nebraska at Kearney and at Omaha, not all majors in the COE accept such low grades. Students must conform to the requirements of their intended major and, in any case, are strongly encouraged to repeat courses with a grade of C- or less.

All transfer students must adopt the curricular requirements of the undergraduate catalog current at the time of transfer to the COE—not that in use when they entered the University of Nebraska–Lincoln. Upon admission to Nebraska, students wishing to pursue degree programs in the COE will be classified and subject to the policies defined in the subsequent section.

Students who were previously admitted to COE and are returning to the College of Engineering must demonstrate a cumulative GPA of 2.5 in order to be readmitted to COE.

College Degree Requirements

Grade Rules

Grade Appeals

In the event of a dispute involving any college policies or grades, the student should appeal to his/her instructor and appropriate department chair or school director (in that order). If a satisfactory solution is not achieved, the student may appeal his/her case through the College Academic Appeals Committee on his/her campus.

Catalog Rule

Students must fulfill the requirements stated in the catalog for the academic year in which they are first admitted at the University of Nebraska–Lincoln. In consultation with advisors, a student may choose
to follow a subsequent catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at Nebraska in the College of Engineering. Students must complete all degree requirements from a single catalog year. The catalog which a student follows for degree requirements may not be more than 10 years old at the time of graduation.

Learning Outcomes

Graduates of the computer engineering program will have:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. An ability to communicate effectively with a range of audiences.
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

The above student outcomes have been approved by the ABET Engineering Area Delegation for use beginning with the 2019-20 academic year, and have been adopted by the faculty of the Department of Electrical and Computer Engineering.

Major Requirements

Requirements for the Degree

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 103</td>
<td>Electrical and Computer Engineering Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 155A</td>
<td>Computer Science I</td>
<td>3</td>
</tr>
<tr>
<td>or CSCE 155E</td>
<td>Computer Science I: Systems Engineering Focus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 106</td>
<td>Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>JGEN 300</td>
<td>Technical Communication II</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 15

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 106</td>
<td>Microprocessor Applications</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 123</td>
<td>Introduction to Electrical and Computer Engineering</td>
<td>1</td>
</tr>
<tr>
<td>ECEN 225</td>
<td>Electrical and Computer Engineering Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CSCE 156</td>
<td>Computer Science II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 107</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 211</td>
<td>General Physics I</td>
<td>4</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 17

Third Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 213</td>
<td>Electrical Circuits I</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 218</td>
<td>Electrical Circuits Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MATH 221</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 212</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 222</td>
<td>General Physics Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>COMM 109</td>
<td>Fundamentals of Human Communication</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 15

Fourth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 217</td>
<td>Electrical Circuits III</td>
<td>1</td>
</tr>
<tr>
<td>ECEN 222</td>
<td>Electronic Circuits I</td>
<td>4</td>
</tr>
<tr>
<td>ECEN 313</td>
<td>Switching Circuits Theory</td>
<td>4</td>
</tr>
<tr>
<td>MATH 208</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>ACE 5 Elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 16

Fifth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 310</td>
<td>Digital Design and Interfacing</td>
<td>4</td>
</tr>
<tr>
<td>ECEN 332</td>
<td>Assembly Language Programming</td>
<td>1</td>
</tr>
<tr>
<td>CSCE 310</td>
<td>Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>MATH 314</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>STAT 380</td>
<td>Statistics and Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 14

Sixth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 325</td>
<td>Communications Systems</td>
<td>4</td>
</tr>
<tr>
<td>ECEN 433</td>
<td>Microprocessor System Design</td>
<td>4</td>
</tr>
<tr>
<td>ENGR Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ACE 6 Elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 17

Seventh Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 435</td>
<td>Embedded Microcontroller Design</td>
<td>4</td>
</tr>
<tr>
<td>ECEN 496</td>
<td>Computer Engineering Capstone I</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 469</td>
<td>Technology, Science and Civilization (UNO)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR Electives</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ACE 7 Elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 15

Eighth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 499</td>
<td>Capstone II</td>
<td>3</td>
</tr>
<tr>
<td>ENGR Electives</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>ACE 9 Elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 15

Total Credit Hours 124

1 Calculus II is a 5-credit course on the Scott Campus (in Omaha). Students taking Calculus II on the Lincoln Campus will need to obtain an additional 1 credit hour of math or science.
2 ENGR 469 is ACE 8

Technical Electives

The computer engineering program requires 15 hours of engineering electives. These consist of at least 15 hours of any ECEN courses at the junior or senior level as well as ECEN 214/2140 or ECEN 216/2160.
Students can substitute 3 of these hours with a course from the following list:

Computer Science (Omaha CSCI) courses:

- 4150/8156 Graph Theory and Applications
- 4220/8226 Programming Languages
- 4300/8306 Deterministic Operations Research Models
- 4310/8316 Probabilistic Operations Research Models
- 4440/8446 Introduction to Parallel Computing
- 4450/8456 Introduction to Artificial Intelligence
- 4470/8476 Pattern Recognition
- 4500/8506 Operating Systems
- 4510/8516 Advanced Operating Systems
- 4620/8626 Computer Graphics
- 4660/8666 Automata, Computability and Formal Languages
- 4760/8766 Topics in Modeling
- 4830/8836 Introduction to Software Engineering
- 4850/8856 Database Management Systems

Math (Omaha MATH) courses:

- 4150/8156 Graph Theory and Applications
- 4300/8306 Deterministic Operations Research Models
- 4310/8316 Probabilistic Operations Research Models
- 4660/8666 Automata, Computability and Formal Languages
- 4760/8766 Topics in Modeling

Career Information

The following represents a sample of the internships, jobs and graduate school programs that current students and recent graduates have reported.

Jobs of Recent Graduates

- Electronics Engineer, National Air and Space Intelligence Center - Dayton OH
- Design Engineer, Garmin - Olathe KS
- Jr. Project Engineer, Union Pacific - Omaha NE
- Product Manager, Hudl - Lincoln NE
- Embedded Systems Engineer, Lockheed Martin - Denver CO
- Software Developer, IBM - Rochester MN
- Computer Engineer, United States Department of Defense - San Antonio TX
- Software Developer in Test, Amazon - Seattle WA
- Software Developer Engineer, Microsoft - Seattle WA
- System Integration Specialist, Sandhills Publishing - Lincoln NE
- Software Engineer, Target Headquarters - Minneapolis MN
- Software Design Engineer, Communication System Solutions - Lincoln NE
- Embedded Software Engineer I, Northrop Grumman - San Diego CA
- Junior Applications Developer, BuilderTrend - Omaha NE
- Senior Managing Consultant, IBM - Austin TX
- Controls Engineer, Anderson Industrial Engines - Omaha NE
- Frontend Engineer, Hayneedle, Inc. - Omaha NE
- Software Engineer, Cerner Corporation - Kansas City MO
- Senior IT Infrastructure Support Analyst, State of Nebraska - Lincoln NE
- Design Engineer & Project Manager, LI-COR Biosciences - Lincoln NE
- Software Developer, Epic Systems - Verona WI
- Application Developer II, BuilderTrend, Inc. - Omaha NE
- Electronic Engineer, United States Department of Defense - Bedford MA
- Software Developer, Spreetail - Lincoln NE
- Firmware Design Engineer, Fisher Controls - Marshalltown IA

Internships

- System Intern, Sandhills Publishing - Lincoln NE
- Aviation Software Engineer, Garmin - Olathe KS
- Software Engineer Intern, Microsoft - Redmond WA
- Simulation Lab Intern, University of Nebraska Medical Center - Omaha NE
- Hardware Engineer, Springbok Inc. - Omaha NE
- Software Development Intern, Epic Systems - Madison WI
- Software Engineering Intern, Firespring - Lincoln NE
- Applications Developer Intern, Gallup - Omaha NE
- Design Engineering Intern, Communication Systems Solutions - Lincoln NE
- Network Design Intern, Union Pacific - Omaha NE
- TTS Intern, Target - Minneapolis MN
- Cyber Security Notification System (CYNOT), Nebraska Public Power District-Cooper Nuclear - Brownville NE
- Quality Engineer Intern, Bosch Security Systems - Lincoln NE
- Creative Consultant, UNL Information and Technology Services - Lincoln NE
- Software Development Intern, Cerner - Kansas City MO
- Software Quality Analyst Intern, Hudl - Lincoln NE
- Research Assistant, University of Alabama - Tuscaloosa AL
- App Development Intern, Farm Credit Services of America - Omaha NE
- System Application Developer Intern, Gallup - Lincoln NE
- Quality Engineer Intern, Bosch Security Systems - Lincoln NE
- Intern, Machine Solutions, Inc. - Flagstaff AZ
- Software Developer Intern, Molex - Lincoln NE
- Intern, Tesla Motors - Fremont CA

Graduate & Professional Schools

- Electrical Engineering, M.S., University of Nebraska - Lincoln - Lincoln NE
- Electrical Engineering, Ph.D., University of California, Los Angeles - Los Angeles CA
- Robotics Engineering, Northwestern University - Evanston IL
• Visualization, M.S., Texas A&M University - College Station TX
• Computer Science, Ph.D., University of Colorado - Boulder CO
• Information Technology, M.S., University of Texas-Austin - Austin TX
• Medical Sciences Interdepartmental Areas, University of Nebraska Medical Center - Omaha NE
• Computer Science, M.S., University of Nebraska-Lincoln - Lincoln NE
• Mathematics, M.S., University of Nebraska Omaha - Omaha NE
• Software Engineering, M.Sc., University of Sheffield - Sheffield Great Britain