CIVIL ENGINEERING

Description
The Department of Civil Engineering offers a complete undergraduate program to students on the Lincoln and Omaha campuses of the University of Nebraska. Curriculum requirements are nearly identical on both campuses. The goal is to prepare students for entry into the civil engineering profession immediately after graduation or to pursue graduate-level studies.

The general educational objectives of the University of Nebraska–Lincoln civil engineering undergraduate program are to prepare our graduates so that, with a UNL BSCE degree, a few years beyond graduation, alumni will:

- **APPLY** their solid foundation in civil engineering toward: the practice, advanced degree education, or a broad range of career choices;
- **PERFORM** technical analysis or design of a complex system, component or process as acting representatives of governmental agencies, private consulting engineering firms, research organizations or industry;
- **EXPLAIN** engineering concepts accurately and effectively to inform technical and non-technical audiences using appropriate verbal, written, virtual and graphical means;
- **APPLY** basic project management and business concepts and processes;
- **ENGAGE** in lifelong learning to foster technical growth, ethical conduct, and practice of professional communication, teamwork and leadership skills;
- **ACCOUNT** for the impacts of their professional decisions on the quality of life and sustainability; and
- **OBTAIN** professional licensure in an area of civil engineering practice.

As a professional discipline, civil engineering is closely related to the total human environment. In all professional endeavors, the civil engineer must consider ecological effects as well as the social, economic, and political needs of people. The civil engineer designs systems to control and manage our water resources to provide electric power, agricultural irrigation, flood control, recreation, water supplies and wastewater treatment systems for our urban and industrial needs.

The civil engineer plans, designs, and constructs our transportation systems including highways, railroads, waterways, and airports to connect rural, urban, and industrial areas. The civil engineer also designs and constructs housing and facilities for recreational, industrial, and commercial complexes, which comprise the urban environment. It is the responsibility of civil engineering to minimize air, water, and land pollution and protect the environment.

Instructional emphasis is placed on fundamental engineering principles derived from mathematics, chemistry, physics, and engineering science. These subjects provide a sound background for the subsequent introductory courses in environmental, geotechnical, structural, transportation, and water resources engineering. Students are introduced to design concepts in the freshman year. Design is incorporated throughout the curriculum that culminates in two senior-level courses, CIVE 385 Professional Practice and Management in Civil Engineering and CIVE 489 Senior Design Project.

Instructional laboratories in environmental engineering, hydraulics, geotechnical engineering, structures, and surveying provide each student with an opportunity to learn, through individual participation, the operation of the testing equipment used to establish engineering design criteria and to monitor and model engineering facilities such as water and wastewater treatment plants, river control systems, and structural systems.

Some students may desire to obtain a degree in construction management in addition to the degree in civil engineering. Because some civil engineering courses require prerequisites beyond those required for similar construction management courses, students should obtain the civil engineering degree first. Advising will be done by a civil engineering faculty member familiar with the construction management curriculum. After completing the civil engineering degree, the student will move to the construction management department to complete requirements for the second undergraduate degree in construction management.

The Departments of Civil Engineering and Architecture have a joint program awarding licensing degrees in both fields of study. A bachelors degree in civil engineering and masters degree in architecture are awarded, after approximately seven years of study. The departments work with individual students in tailoring a joint degree program. More information can be obtained from either department office.

Major Department Admission

Professional Admission Requirements

Criteria for Professional Admission to the Civil Engineering Degree Program
Pre-professionally admitted College of Engineering students majoring in civil engineering must have their academic records reviewed for professional admission to the Civil Engineering Degree Program during the fall, spring or summer immediately following the term in which:

- at least 43 credits applicable to the degree have been earned, and
- PHYS 211 General Physics I, MECH 223 Engineering Statics, MECH 325 Mechanics of Elastic Bodies and MECH 373 Engineering Dynamics have been completed with C letter grades or better.

It is likely a student may need to complete four full semesters of credits applying to the Program before these requirements are able to be completed.

To be considered for professional admission, the following College of Engineering general criteria must be met:

- Completion of at least 12 credits (one semester) after admission to the College of Engineering.
- Cumulative grade point average of 2.4 or greater, and
- No more than two declined admission requests to other engineering majors.

Professional admission approval to the Civil Engineering Degree Program requires the following Departmental-specific criteria must also be achieved:

- Earn a C letter grade or better in PHYS 211, MECH 223, MECH 325 and MECH 373, and
- Earn a C letter grade or better in ALL math, science and engineering courses required for the bachelor of science in civil engineering degree if the cumulative grade point average is less than 2.700.

Students approved for professional admission to the Program are then allowed to take 400-level civil engineering courses to complete their degree.
College Requirements

College Admission

College Entrance Requirements
Students must have high school credit for (one unit is equal to one high school year):

1. 4 units of mathematics: 2 of algebra, 1 of geometry, 1 of precalculus and trigonometry.
2. 4 units of English.
3. 3 units of natural science that must include 1 unit of physics and 1 unit of chemistry (chemistry requirement waived for students in construction management).
4. 2 units of a single foreign language.
5. 3 units of social studies.
6. Students having a composite ACT score of 28 or greater (or equivalent SAT score) will be admitted to the College of Engineering even if they lack any one of the following: trigonometry, chemistry, or physics.
7. Students having an ACT score of 19 or less in English (or equivalent SAT score) must take ENGL 150 Writing and Inquiry or ENGL 151 Writing and Argument.

A total of 16 units is required for admission.

Students must have an ACT (enhanced) score of 24 or greater (or equivalent SAT). Students who lack entrance requirements may be admitted based on ACT scores, high school rank and credits, or may be admitted to pre-engineering status in the Exploratory and Pre-Professional Advising Center. Pre-engineering students are advised within the College of Engineering.

Students for whom English is not their language of nurture must meet the minimum English proficiency requirements of the University.

Students who lack entrance units may complete precollege training by Independent Study through the UNL Office of On-line and Distance Education, in summer courses, or as a part of their first or second semester course loads while in the Exploratory and Pre-Professional Advising Center or other Colleges at UNL.

Students should consult their advisor, their department chair, or Engineering Student Services if they have questions on current policies.

Other Admission Requirements
Students who transfer to the University of Nebraska–Lincoln from other accredited colleges or universities and wish to be admitted to the College of Engineering (COE) must meet COE freshman entrance requirements and have a minimum cumulative GPA of 2.5 for Nebraska residents or 3.0 for non-residents, and be calculus-ready. Students not meeting either of these requirements must enroll in the Explore Center or another UNL college until they meet COE admission requirements.

The COE accepts courses for transfer for which a C- or less.

To pursue degree programs in the COE will be classified and subject to the policies defined in the subsequent section.

College Degree Requirements

Grade Rules

Grade Appeals
In the event of a dispute involving any college policies or grades, the student should appeal to his/her instructor, and appropriate department chair or school director (in that order). If a satisfactory solution is not achieved, the student may appeal his/her case through the College Academic Appeals Committee on his/her campus.

Catalog Rule

Students must fulfill the requirements stated in the catalog for the academic year in which they are first admitted at UNL. In consultation with advisors, a student may choose to follow a subsequent catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at UNL in the College of Engineering. Students must complete all degree requirements from a single catalog year. The catalog which a student follows for degree requirements may not be more than 10 years old at the time of graduation.

student Outcomes

Graduates of the civil engineering program will have:

(a) an ability to apply knowledge of mathematics, science, and engineering (b) an ability to design and conduct experiments, as well as to analyze and interpret data (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, (d) an ability to function on multidisciplinary teams (e) an ability to identify, formulate, and solve engineering problems (f) an understanding of professional and ethical responsibility (g) an ability to communicate effectively (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context (i) a recognition of the need for, and an ability to engage in lifelong learning (j) a knowledge of contemporary issues (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Major Requirements

Requirements for the Degree of Bachelor of Science in Civil Engineering (Lincoln and Omaha campuses)

Students must have completed the equivalent of the fourth semester before admission to the civil engineering program. Transfer students must have all transfer hours accepted before being considered for the degree program.

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 112</td>
<td>Introduction to Civil Engineering</td>
<td>1</td>
</tr>
<tr>
<td>CSCE 155N</td>
<td>Computer Science I: Engineering and Science Focus</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 10</td>
<td>Freshman Engineering Seminar</td>
<td>0</td>
</tr>
<tr>
<td>MATH 106</td>
<td>Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 109</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>ACE Elective</td>
<td>Choose one course each from ACE outcomes 5, 6, 7, 8, and 9 elective courses</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 16
**Second Semester**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 130 /</td>
<td>Computer-Aided Design ¹</td>
<td>2</td>
</tr>
<tr>
<td>BSEN 130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 221 /</td>
<td>Geometric Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>CONE 221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 107</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 211</td>
<td>General Physics I</td>
<td>4</td>
</tr>
</tbody>
</table>

**ACE Elective**

Choose one course each from ACE outcomes 5, 6, 7, 8, and 9 elective courses

Credit Hours Subtotal: 16

**Third Semester**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 20</td>
<td>Sophomore Engineering Seminar</td>
<td>0</td>
</tr>
<tr>
<td>JGEN 200</td>
<td>Technical Communication I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 208</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MECH 223</td>
<td>Engineering Statics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 212</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>or CHEM 110</td>
<td>General Chemistry II</td>
<td></td>
</tr>
</tbody>
</table>

**ACE Elective**

Choose one course each from ACE outcomes 5, 6, 7, 8, and 9 elective courses

Credit Hours Subtotal: 17

**Fourth Semester**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 361</td>
<td>Highway Engineering</td>
<td>3</td>
</tr>
<tr>
<td>COMM 286</td>
<td>Business and Professional Communication</td>
<td>3</td>
</tr>
<tr>
<td>MATH 221</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MECH 325</td>
<td>Mechanics of Elastic Bodies</td>
<td>3</td>
</tr>
<tr>
<td>MECH 373</td>
<td>Engineering Dynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 15

**Fifth Semester**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 310 /</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MECH 310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 319</td>
<td>Hydraulics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CIVE 326 /</td>
<td>Introduction to Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BSEN 326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 327 /</td>
<td>Environmental Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BSEN 327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 341</td>
<td>Introduction to Structural Engineering</td>
<td>4</td>
</tr>
<tr>
<td>MATH 380</td>
<td>Statistics and Applications</td>
<td>3</td>
</tr>
<tr>
<td>or MECH 321</td>
<td>Engineering Statistics and Data Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 15

**Sixth Semester**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 334</td>
<td>Introduction to Geotechnical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CIVE 352</td>
<td>Introduction to Water Resources Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 378</td>
<td>Materials of Construction</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 385</td>
<td>Professional Practice and Management in Civil Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

**ACE Elective**

Choose one course each from ACE outcomes 5, 6, 7, 8, and 9 elective courses

Credit Hours Subtotal: 16

**Seventh Semester**

**Technical Elective**

- A description of allowable technical elective courses is available from the civil engineering department

**Design Electives**

A full list of approved elective courses is available from the civil engineering department

**ACE Elective**

Choose one course each from ACE outcomes 5, 6, 7, 8, and 9 elective courses

**Science Elective**

Approved science elective courses include:

- BIOS 101 General Biology
- & BIOS 101L and General Biology Laboratory
- CHEM 251 Organic Chemistry I
- & CHEM 253 and Organic Chemistry I Laboratory
- GEOL 101 Dynamic Earth
- CIVE 498 Special Topics in Civil Engineering ²

Credit Hours Subtotal: 17

**Eighth Semester**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 419</td>
<td>Senior Design Project</td>
<td>3</td>
</tr>
</tbody>
</table>

**Technical Electives**

A description of allowable technical elective courses is available from the civil engineering department

**Professional Development Elective**

A full list of approved professional development elective courses is available from the civil engineering department.

Credit Hours Subtotal: 18

Total Credit Hours: 130

¹ MECH 130 Introduction to CAD is an acceptable substitute.
² A list of allowable alternative courses is available from the civil engineering department.
CIVE 112 Introduction to Civil Engineering
Description: Introduction to civil engineering as a career by use of case studies; alternate approaches to engineering designs illustrated by use of engineering principles.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC

CIVE 125 Ecology, the Environment, and the Engineer
Description: Investigation into the nature of ecology, man's relation with the environment and man's chance of survival in that environment, and the potential influence, for good or bad, of modern man's activities.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 130 Computer-Aided Design
Crosslisted with: BSEN 130
Description: Use of computer-aided design software to communicate engineering ideas. Specifications, dimensioning, tolerancing, 2- and 3-D model development, topographic mapping, and process layout with environmental, bioprocess, and biomedical emphases.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LEC
Prerequisite for: AGEN 470, BSEN 470

CIVE 221 Geometric Control Systems
Crosslisted with: CONE 221
Prerequisites: MATH 106, 106B or 108H
Description: Introduction to the theory and application of mensuration and geometric information processing in civil engineering. Measurement of distance, direction, elevation, and location using mechanical, electronic, and satellite systems. Collection of field data and error propagation. Elementary geometric data bases for design, construction, operation, and control of civil works.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LAB
Prerequisite for: CIVE 361

CIVE 252 Construction Materials Laboratory
Prerequisites: MATH 106/106B/108H; CNST 251 or parallel.
Description: Introduction to ASTM and AASHTO standard procedures used to measure soil and concrete properties; common modifications to soil and concrete mixes are discussed and analyzed.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LAB

CIVE 310 Fluid Mechanics
Prerequisites: MECH 373 and MATH 221
Description: Fluid statics, equations of continuity, momentum, and energy dimensional analysis and dynamic similitude. Applications to: flow meters; fluid pumps and turbines; viscous flow and lubrication; flow in closed conduits and open channels. Two-dimensional potential flow.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL/SPR
Prerequisite for: AGEN 325, BSEN 325; AGEN 344, BSEN 344; BSEN 425, CIVE 425; CIVE 352; MECH 446

CIVE 310H Honors: Fluid Mechanics
Prerequisites: Good standing in the University Honors Program or by invitation; MECH 373, MATH 221
Description: Honor students required to study beyond levels expected of students in normal sections and prepare a special report.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: AGEN 325, BSEN 325; AGEN 344, BSEN 344; CIVE 352; MECH 446

CIVE 319 Hydraulics Laboratory
Prerequisites: MECH 310 or CIVE 310 or parallel
Description: Hydraulics experiments and demonstrations. Velocity, pressure and flow measurements; pipe flow, open channel flow; hydraulic structures and machinery, hydrologic and sediment measurements and student projects.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LAB

CIVE 326 Introduction to Environmental Engineering
Crosslisted with: BSEN 326
Prerequisites: CHEM 110 or 111 or 113 and MATH 221
Description: Introduction to principles of environmental engineering including water quality, atmospheric quality, pollution prevention, and solid and hazardous wastes engineering. Design of water, air, and waste management systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: BSEN 425, CIVE 425

CIVE 326H Honors: Introduction to Environmental Engineering
Crosslisted with: BSEN 326H
Prerequisites: Good standing in the University Honors Program or by invitation; CHEM 110 or 111 or 113 and Math 221.
Description: Introduction to principles of environmental engineering including water quality, atmospheric quality, pollution prevention, and solid and hazardous wastes engineering. Design of water, air, and waste management systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Crosslist with</th>
<th>Prerequisites</th>
<th>Description</th>
<th>Credit Hours</th>
<th>Max credits per semester</th>
<th>Max credits per degree</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 327</td>
<td>Environmental Engineering Laboratory</td>
<td></td>
<td>CHEM 110 or 111 or 113, and MATH 221.</td>
<td>Environmental engineering experiments, demonstrations, field trips, and projects. Experiments include the measurement and determination of environmental quality parameters such as solids, dissolved oxygen, biochemical and chemical oxygen demand, and alkalinity.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>LAB</td>
</tr>
<tr>
<td>CIVE 334</td>
<td>Introduction to Geotechnical Engineering</td>
<td></td>
<td>MECH 325.</td>
<td>Soil composition, structure and phase relationships; soil classification. Principles of effective stress; loading induced subsurface stresses; load history; deformation and failure of soils. Elastic and limit analysis with applications to design for bearing capacity, settlement, retaining walls, and slope stability. Steady-state seepage.</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>LEC</td>
</tr>
<tr>
<td>CIVE 341</td>
<td>Introduction to Structural Engineering</td>
<td></td>
<td>MECH 325.</td>
<td>Introduction to the analysis and design of structural systems. Analyses of determinate and indeterminate trusses, beams, and frames, and design philosophies for structural engineering. Laboratory experiments deal with the analysis of determinate and indeterminate structures.</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>LEC</td>
</tr>
<tr>
<td>CIVE 352</td>
<td>Introduction to Water Resources Engineering</td>
<td></td>
<td>CIVE/MECH 310.</td>
<td>Introduction to water resources engineering design and planning, surface hydrology, ground water hydraulics, reservoirs, and other control structures. Introduction to field measurement and computational methods in water resources.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
</tr>
<tr>
<td>CIVE 361</td>
<td>Highway Engineering</td>
<td></td>
<td>CIVE/MECH 221 (CONE 2210 (UNO)) MECH 223.</td>
<td>Introduction to the principles of highway engineering and traffic operations and control.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
</tr>
<tr>
<td>CIVE 385</td>
<td>Professional Practice and Management in Civil Engineering</td>
<td></td>
<td>Junior standing and CIVE major.</td>
<td>Basic elements of civil engineering practice. Roles of all participants in the process-owners, designers, architects, contractors, and suppliers. Basic concepts in business management, public policy, leadership, and professional licensure. Professional relations, civic responsibilities, and ethical obligations for engineering practice. Project management, contracts, allocation of resources, project estimating, planning, and controls.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
</tr>
<tr>
<td>CIVE 401</td>
<td>Civil Engineering Systems</td>
<td></td>
<td>CIVE 801</td>
<td>Systems analysis approach to civil engineering problems. Systems model elements and principles of systems theory with applications to civil engineering.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
</tr>
<tr>
<td>CIVE 419</td>
<td>Flow Systems Design</td>
<td></td>
<td>CIVE 819</td>
<td>Application of hydraulic principles to the design of water distribution systems, wastewater and stormwater collection systems, channelized flow systems, and treatment facilities.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
</tr>
</tbody>
</table>
CIVE 421 Hazardous Waste Management and Treatment
Crosslisted with: CIVE 821
Prerequisites: CIVE 326/BSEN 326.
Description: Survey of the hazardous waste management system in the USA. State and federal hazardous waste regulations. Chemical characteristics of hazardous waste and unit operations and processes used for treatment of soil, water, and air.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 422 Pollution Prevention: Principles and Practices
Crosslisted with: BSEN 422, BSEN 822, CIVE 822
Prerequisites: Permission; professional admission to the BS CIVE degree program for BS CIVE majors.
Description: Introduction to pollution prevention (P2) and waste minimization methods. Practical applications to small businesses and industries. Legislative and historical development of P2 systems analysis, waste estimation, P2 methods, P2 economics, and sources of P2 information.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 424 Solid Waste Management Engineering
Crosslisted with: CIVE 824
Prerequisites: CIVE 326, CIVE 334.
Description: Planning, design and operation of solid and waste collection processing, treatment, and disposal systems including materials, resources and energy recovery systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 425 Process Design in Water Supply and Wastewater Treatment
Crosslisted with: BSEN 425
Prerequisites: CIVE/BSEN 326 and CIVE/MECH 310.
Description: Design of unit operations and processes associated with drinking water and wastewater treatment facilities.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 426 Design of Water Treatment Facilities
Crosslisted with: CIVE 826
Prerequisites: CIVE 425 or permission.
Description: Analysis of water supplies and design of treatment and distribution systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 427 Design of Wastewater Treatment and Disposal Facilities
Crosslisted with: CIVE 827
Prerequisites: CIVE 425 or permission.
Description: Analysis of systems for wastewater treatment and disposal.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 430 Fundamentals of Water Quality Modeling
Crosslisted with: CIVE 830
Prerequisites: CIVE 326.
Description: Comprehensive study of water quality and the effects of various water pollutants on the aquatic environment; modeling of water quality variables.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 431 Small Treatment Systems
Crosslisted with: CIVE 831
Prerequisites: Parallel CIVE/BSEN 425.
Description: Design of small and decentralized waste water management systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 432 Bioremediation of Hazardous Wastes
Crosslisted with: CIVE 832
Prerequisites: CIVE/BSEN 326 and CIVE/MECH 310.
Description: Principles, applications, and limitations of bioremediation of hazardous wastes and design of some bioremediation systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 434 Soil Mechanics II
Crosslisted with: CIVE 834
Prerequisites: CIVE 334.
Description: Application of the effective stress principle to shear strength of cohesive soil; analysis of stability of slopes. Development of continuum relationships for soil; solutions for stresses and displacements for an elastic continuum. Solution of the consolidation equation for various initial and boundary conditions.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 436 Foundation Engineering
Crosslisted with: CIVE 836
Prerequisites: CIVE 334.
Description: Subsoil exploration and interpretation; selection of foundation systems; determination of allowable bearing capacity and settlement; design of deep foundations; pile driving analysis; control of groundwater.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
CIVE 439 Introduction to Bridge Engineering
Crosslisted with: CIVE 839
Prerequisites: CIVE 440/840 or 441.
Description: Structural types, bridge loads, design of bridge slabs, steel girder bridges, and prestressed concrete girder bridges. Evaluation of existing bridges. Problems related to fatigue and corrosion Field testing of bridges.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 440 Reinforced Concrete Design I
Crosslisted with: CIVE 840
Prerequisites: CIVE 341.
Description: Introduction to the design concepts of reinforced concrete building components. The design of flexural and compression members, simple walls, foundations, and floor systems using the latest American Concrete Institute (ACI) design requirements.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 441 Steel Design I
Prerequisites: CIVE 341.
Description: Introduction to the design concepts for structural steel building components. Design of tension members, bolted and welded connections, column members, and beam members. Limit states design concepts used throughout, and emphasis on behavior of members and code design procedures.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 443 Advanced Structural Analysis
Crosslisted with: CIVE 843
Prerequisites: CIVE 341.
Description: Matrix analysis methods and computer solutions for indeterminate structures. Additional topics: static condensation, shear deformations, and non-prismatic members in matrix-based analyses, moment distribution method, load cases and load combinations for buildings and bridges, and influence lines and analysis for moving loads.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 444 Structural Design and Planning
Crosslisted with: CIVE 844
Prerequisites: CIVE 440 and CIVE 441.
Notes: CIVE 844 is not available for graduate credit for civil engineering students.
Description: Principles of design of steel and reinforced concrete structural building systems, planning of building vertical and horizontal load resisting systems, and bridge systems. Several design projects involve indeterminate analysis and design concepts for both steel and reinforced concrete.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
ACE: ACE 10 Integrated Product

CIVE 446 Steel Design II
Crosslisted with: CIVE 846
Prerequisites: CIVE 441.
Description: The principles and procedures used in design of steel buildings, design of plate girders, design and analysis of building systems, design and analysis of composite steel-concrete building systems, innovative building systems, introduction to seismic design of steel buildings. Plate buckling, beam, column and beam-column design, and frame stability. Introduction to connection design.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 447 Reinforced Concrete Design II
Crosslisted with: CIVE 847
Prerequisites: CIVE 440/840.
Notes: CIVE 447/847 is a continuation of topics covered in CIVE 440/840.
Description: Shear friction theory, strut-and-tie modeling, anchorage, deflection, slender and bi-axially loaded members, torsion, two-way action and punching shear, and footing design. Excel spreadsheets are developed and used for various design tasks.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 452 Water Resources Development
Crosslisted with: CIVE 852
Prerequisites: CIVE 352.
Description: Theory and application of systems engineering with emphasis on optimization and simulation techniques for evaluating alternatives in water resources developments related to water supply, flood control, hydroelectric power, drainage, water quality, water distribution, irrigation, and water measurement.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 454 Hydraulic Engineering
Crosslisted with: CIVE 854
Prerequisites: CIVE 352.
Description: Fundamentals of hydraulics with applications of mechanics of solids, mechanics of fluids, and engineering economics to the design of hydraulic structures. Continuity, momentum, and energy principles are applied to special problems from various branches of hydraulic engineering.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CIVE 455 Nonpoint Source Pollution Control Engineering
Crosslisted with: BSEN 455, BSEN 855, CIVE 855
Prerequisites: BSEN 326 or CIVE 326; BSEN 350 or AGEN 350 or CIVE 352.
Description: Identification, characterization, and assessment of nonpoint source pollutants; transport mechanisms and remediation technologies; design methodologies and case studies.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

ACE: ACE 10 Integrated Product
CIVE 456 Surface Water Hydrology  
Crosslisted with: CIVE 856  
Prerequisites: CIVE 352 or CIVE 353/CIVE 853 or permission.  
Description: Stochastic analysis of hydrological data and processes including rainfall, runoff, infiltration, temperature, solar radiation, wind, and non-point pollution. Space-time hydrologic modeling with emphasis on the application of techniques in the design of engineering projects.  
Credit Hours: 3  
Max credits per semester: 3  
Max credits per degree: 3  
Format: LEC

CIVE 458 Groundwater Engineering  
Crosslisted with: BSEN 458, BSEN 858, CIVE 858  
Prerequisites: CIVE 352 or AGEN 350 or BSEN 350 or equivalent.  
Description: Application of engineering principles to the movement of groundwater. Analysis and design of wells, well fields, and artificial recharge. Analysis of pollutant movement.  
Credit Hours: 3  
Max credits per semester: 3  
Max credits per degree: 3  
Format: LEC

CIVE 459 Reliability of Structures  
Crosslisted with: CIVE 859  
Prerequisites: CIVE 341.  
Description: Fundamental concepts related to structural reliability, safety measures, load models, resistance models, system reliability, optimum safety levels, and optimization of design codes.  
Credit Hours: 3  
Max credits per semester: 3  
Max credits per degree: 3  
Format: LEC

CIVE 461 Urban Transportation Planning  
Crosslisted with: CIVE 861  
Prerequisites: CIVE 361.  
Description: Development of urban transportation planning objectives and goals. Data collection procedures, land use and travel forecasting techniques, trip generation, trip distribution, modal choice analyses, and traffic assignment. Site development and traffic impact analysis.  
Credit Hours: 3  
Max credits per semester: 3  
Max credits per degree: 3  
Format: LEC

CIVE 462 Highway Design  
Crosslisted with: CIVE 862  
Prerequisites: CIVE 361  
Notes: CIVE 462/862 has an emphasis on design projects.  
Description: Design of roadways, intersections, interchanges, parking facilities, and land development site access and circulation. Emphasis on design projects.  
Credit Hours: 3  
Max credits per semester: 3  
Max credits per degree: 3  
Format: LEC

CIVE 463 Traffic Engineering  
Crosslisted with: CIVE 863  
Prerequisites: CIVE 361.  
Notes: CIVE 463/863 emphasizes design projects.  
Description: Design of signalized intersections, arterial street and network signal systems, and freeway control systems.  
Credit Hours: 3  
Max credits per semester: 3  
Max credits per degree: 3  
Format: LEC

CIVE 468 Airport Planning and Design  
Crosslisted with: CIVE 868  
Prerequisites: CIVE 361.  
Description: Planning and design of general aviation and air carrier airports. Land-side components include vehicle ground-access systems, vehicle circulation parking, and terminal buildings. Air-side components include aircraft apron-gate area, taxi-way systems, runway system, and air traffic control facilities and airspace. Emphasis on design projects.  
Credit Hours: 3  
Max credits per semester: 3  
Max credits per degree: 3  
Format: LEC

CIVE 469 Computer-Aided Interchange Design  
Crosslisted with: CIVE 869  
Prerequisites: CIVE 462/862 or equivalent.  
Description: Principles of high-speed traffic operations, safety, and decision making related to critical design parameters used for optimal interchange geometric designs.  
Credit Hours: 3  
Max credits per semester: 3  
Max credits per degree: 3  
Format: LEC

CIVE 471 Bituminous Materials and Mixtures  
Crosslisted with: CIVE 871  
Prerequisites: CIVE 378 or equivalent  
Description: Understanding of the physical, chemical, geometrical, and mechanical characteristics and practical applications of bituminous materials and mixtures. Fundamental mechanics for elastic and inelastic materials and basic theories associated with mechanical data analyses and designs. Recent advances and significant research outcomes for further discussions. Applications of theories to laboratory and field testing.  
Credit Hours: 3  
Max credits per semester: 3  
Max credits per degree: 3  
Format: LEC

CIVE 472 Pavement Design and Evaluation  
Crosslisted with: CIVE 872  
Prerequisites: CIVE 334.  
Description: Thickness design of flexible and rigid pavement systems for highways and airports; design of paving materials; evaluation and strengthening of existing pavements.  
Credit Hours: 3  
Max credits per semester: 3  
Max credits per degree: 3  
Format: LEC
CIVE 475 Water Quality Strategy  
**Crosslisted with:** NRES 475, NRES 875, SOCI 475, SOCI 875, SOIL 475, WATS 475, AGRO 475, AGRO 875, CIVE 875, CRPL 475, CRPL 875, GEOL 475, GEOL 875, MSYM 475, MSYM 875, POLS 475, POLS 875  
**Prerequisites:** Senior standing or permission  
**Notes:** Capstone course.  
**Description:** Holistic approach to the selection and analysis of planning strategies for protecting water quality from nonpoint sources of contamination. Introduction to the use of methods of analyzing the impact of strategies on whole systems and subsystems; for selecting strategies; and for evaluating present strategies.  
**Credit Hours:** 3  
**Max credits per semester:** 3  
**Max credits per degree:** 3  
**Format:** LEC  
ACE: ACE 10 Integrated Product  
Groups: American Government & Public Policy

CIVE 476 Construction Cost Controls  
**Prerequisites:** ACCT 306 or 201 and 202  
**Description:** Development of cost accounting principles and financial controls appropriate for construction contractors. Includes purchasing policies and procedures, labor and equipment cost reporting techniques, accounting procedures for control of materials and supplies, billing methods, principles of financial reporting and analysis.  
**Credit Hours:** 3  
**Max credits per semester:** 3  
**Max credits per degree:** 3  
**Format:** LEC  
ACE: ACE 10 Integrated Product  
Groups: American Government & Public Policy

CIVE 478 Computational Problem Solving in Civil Engineering  
**Crosslisted with:** CIVE 881  
**Description:** Introduction of numerical methods to solve problems in civil engineering, including finding roots of equations, solving linear algebra equations, optimization, curve fitting, numerical differentiation and integration, and finite difference method. Computational methods in numerical integration, matrix operations and ordinary differential equations as they apply to civil engineering problems.  
**Credit Hours:** 3  
**Max credits per semester:** 3  
**Max credits per degree:** 3  
**Format:** LEC

CIVE 489 Senior Design Project  
**Prerequisites:** Senior standing and CIVE 385.  
**Notes:** CIVE 489 requires the formulation and completion of a civil engineering design project.  
**Description:** Course provides senior civil engineering students with the opportunity to apply engineering concepts and principles to a comprehensive design project of multiple sub-disciplinary nature. The principal objectives are for students to develop an understanding of the entire life-cycle of civil engineering projects with emphasis on the development of a unified and sustainable design that addresses the client’s needs; project team work; strong engineer-client relationships; and effective project communications.  
**Credit Hours:** 3  
**Max credits per semester:** 3  
**Max credits per degree:** 3  
**Format:** LEC  
ACE: ACE 10 Integrated Product

CIVE 489H Honors: Senior Design Project  
**Prerequisites:** Senior standing; parallel CIVE 385; good standing in the University Honors Program or by invitation.  
**Notes:** CIVE 489H requires study beyond the level expected of non-honors section and requires the preparation of a special report.  
**Credit Hours:** 3  
**Max credits per semester:** 3  
**Max credits per degree:** 3  
**Format:** LEC  
ACE: ACE 10 Integrated Product

CIVE 498 Special Topics in Civil Engineering  
**Crosslisted with:** CIVE 898  
**Prerequisites:** Permission.  
**Description:** Special problems, topics, or research in civil engineering.  
**Credit Hours:** 1-6  
**Min credits per semester:** 1  
**Max credits per semester:** 6  
**Max credits per degree:** 6  
**Format:** LEC

CIVE 499H Honors Thesis  
**Prerequisites:** Senior standing in civil engineering and admission in the University Honors Program.  
**Description:** Honors thesis research project meeting the requirements of the University Honors Program. Independent research project executed under the guidance of a member of the faculty of the Department of Civil Engineering which contributes to the advancement of knowledge in the field. Culminates in the presentation of an honors thesis to the Department and College.  
**Credit Hours:** 1-3  
**Min credits per semester:** 1  
**Max credits per semester:** 3  
**Max credits per degree:** 3  
**Format:** IND  
ACE: ACE 10 Integrated Product

PLEASE NOTE  
This document represents a sample 4-year plan for degree completion with this major. Actual course selection and sequence may vary and should be discussed individually with your college or department academic advisor. Advisors also can help you plan other experiences to enrich your undergraduate education such as internships, education abroad, undergraduate research, learning communities, and service learning and community-based learning.

### 16 HR TERM 1

**Engineering Topics**  
complete CIVE 112  
1hr

**Computer Skills**  
complete CSCE 155N  
3hr

**Engineering Seminars**
ENGR 10 becomes critical to your success in the major if not completed by the end of the first term of enrollment.

ACE 5 Humanities

Complete 1 from ACE5

Complete and ACE 5, 6, 7, 8, or 9 requirement.

ACE 4 General Chemistry

Complete CHEM 109

MATH 106 becomes critical to your success in the major if not completed by the end of the second term of enrollment.

ACE 3 Calculus

Complete MATH 106

MATH 106 becomes critical to your success in the major if not completed by the end of the second term of enrollment.

17 HR TERM 2

Engineering Topics

Complete CIVE 130

CIVE 221 becomes critical to your success in the major if not completed by the end of the third term of enrollment.

ACE 3 Calculus

Complete MATH 107

MATH 107 becomes critical to your success in the major if not completed by the end of the third term of enrollment.

ACE 4 General Physics

Complete PHYS 211

PHYS 211 becomes critical to your success in the major if not completed by the end of the third term of enrollment.

ACE 6 Social Sciences

Complete 1 from ACE6

Complete an ACE 5, 6, 7, 8, or 9 requirement this term.

17 HR TERM 3

Engineering Seminars

Complete ENGR 20#

ENGR 20 becomes critical to your success in the major if not completed by the end of the fifth term of enrollment.

ACE 1 Written Comm

Complete JGEN 200

ACE 3 Calculus

Complete MATH 208

MATH 208 becomes critical to your success in the major if not completed by the end of the fourth term of enrollment.

ACE 7 Arts

Complete 1 from ACE7

Complete an ACE 5, 6, 7, 8, or 9 requirement this term.
### Chemistry Physics Option
complete either CHEM 110 or PHYS 212

### 15 HR TERM 4

**Chemistry Physics Option**
complete either CHEM 110 or PHYS 212

**Engineering Topics**
complete CIVE 361

**ACE 2 Oral Comm**
complete COMM 286

**Differential Equations**
complete MATH 221

MATH 221 becomes critical to your success in the major if not completed by the end of the sixth term of enrollment.

**Engineering Topics**
complete MECH 325, MECH 373

MECH 325 and MECH 373 become critical to your success in the major if not completed by the end of the fifth term of enrollment.

### 15 HR TERM 5

**Fluid Mechanics**
complete CIVE 310

**Engineering Topics**
complete CIVE 319, CIVE 326, CIVE 327, CIVE 341

**Statistical Applications**
complete either MATH 380 or MECH 321

### 16 HR TERM 6

**Engineering Topics**
complete CIVE 334, CIVE 352, CIVE 378

**Prof Practice and Mngt**
complete CIVE 385

CIVE 385 becomes critical to your success in the major if not completed by the end of the sixth term of enrollment.

**ACE 8 Ethical Principles**
complete 1 from ACE8

Complete an ACE 5, 6, 7, 8, or 9 requirement this term.

### Milestones
1. Professional Admission into College.

### 17 HR TERM 7

**Civil Engr Technical Elec**
recommend 1 or more courses

See advisor for list.

**Design Electives**
recommend 1 or more courses

See advisor for list.

**ACE 9 Global/Human Divers**
recommend 1 or more courses

Complete an ACE 5, 6, 7, 8, or 9 requirement this term.

**CIVE Science Elective**
complete 2 from BIOS 101, BIOS 101L, CHEM 251, CHEM 253, GEOL 101

Complete one set from BIOS 101/101L, CHEM 251/253, or GEOL 101 (GEOL 101 only requires completing one course).
complete CIVE 498

18 HR TERM 8

ACE 10 Capstone

complete CIVE 489

CIVE 489 becomes critical to your success in the major if not completed by the end of the eighth term of enrollment.

Civil Engr Technical Elec

recommend 1 or more courses

9hr

See advisor for list.

Design Electives

recommend 1 or more courses

3hr

See advisor for list.

Prof Development Elect

recommend 1 or more courses

3hr

See advisor for list.

Graduation Requirements

1. 130 hours required for graduation.
2. 2.40 GPA required for graduation.
3. 30 of the last 36 hours must be taken at UNL/UNO.

Career Information

The following represents a sample of the internships, jobs and graduate school programs that current students and recent graduates have reported.

Jobs of Recent Graduates

• Engineer I, Nebraska Department of Roads - Lincoln NE
• Design Engineer in Geotechnical Group, Alfred Benesch Company - Lincoln NE
• Assistant Traffic Engineer, Olsson Associates - Omaha NE
• Water Resources Engineer, Boulder Associates, Inc. - Atlanta GA
• Civil Engineer-In-Training, SRF Consulting - Minneapolis MN
• Railroad Bridge Engineer, HDR - Omaha NE
• Water Resources Engineer in Training, JEO Consulting - Omaha NE
• Environmental Engineer, Burns and McDonnell - Kansas City MO
• Engineering Manager - Structures, Union Pacific Railroad - Omaha NE
• Field Engineer, Skanska - Phoenix AZ

Internships

1hr
• Roadway Design Intern, HDR Inc - Omaha NE
• Materials Engineering Summer Student, Lawrence Livermore National Laboratory - Livermore CA
• Fuel Conservation Representative, Union Pacific - Omaha NE
• CIVE Co-op, LES - Lincoln NE
• Structural Engineering Intern, Valmont Industries - Valley NE
• Mid-American Transportation Center Intern, City of Omaha Traffic Department - Omaha NE
• Assistant Surveyor, Olsson Associates - South Sioux City NE
• Engineer Intern, Kiewit - Denver CO
• Transportation Intern, Lamp Rynearson Associates - Omaha NE
• Structural Engineer Intern, KPFF Consulting Engineers - Sacramento CA

Grad Schools

• Masters in Structural Engineering, Colorado State University - Fort Collins CO
• Master of Science in Structural Engineering, Stanford University - Stanford CA
• Ph.D. Civil Engineering, Texas AM University - College Station TX
• Civil and Environmental Engineering, M.S., University of California, Los Angeles - Los Angeles CA
• Master of Science in Civil Engineering, University of Nebraska-Lincoln - Lincoln NE
• Civil Engineering, Ph. D., University of Nebraska-Lincoln - Lincoln NE
• Ph.D. Civil Engineering, Iowa State University - Ames IA
• Masters of Civil Engineering, Michigan State University - East Lansing MI
• Environmental Engineering, Ph.D., University of Illinois-Urbana Champaign - Urbana IL
• Masters/Doctorate in Aeronautical and Astronautical Engineering, Stanford University - Stanford CA