CHEMICAL ENGINEERING

Description

The mission of the University of Nebraska—Lincoln chemical and biomolecular engineering program is to provide qualified students with a foundation in engineering sciences and engineering design methods to prepare them for successful professional careers and to contribute to the needs of society.

Program Educational Objectives

In pursuit of the program’s mission, the Department of Chemical and Biomolecular Engineering has established the Educational Objectives given below.

Succeeds professionally. Graduates will succeed professionally by making positive contributions to address the needs of society, generating new knowledge, and providing leadership in their respective industry or field.

Solves engineering and scientific challenges. Graduates will use critical thinking and engineering techniques and strategies to develop economical solutions to technical challenges, within practical constraints and limitations.

Communicates effectively to diverse audiences. Graduates will demonstrate respect for different perspectives and use effective communication skills with broad and diverse audiences.

Acts safely and ethically. Graduates will uphold the American Institute of Chemical Engineers (AIChE) Code of Ethics and will influence others to do the same.

Engages in life-long learning. Graduates will engage in self-initiated, life-long learning for professional growth in their chosen career paths.

The Department of Chemical and Biomolecular Engineering offers a course of study designed for students who plan careers in a wide variety of industries, ranging from the chemical and process industries to biotechnology, electronics, and the environment. Students receive training in the basic subjects of mathematics, English, and physics in common with other students in engineering, but in addition receive extensive training in chemistry. In various courses, the emphasis is placed on the fundamental principles of fluid mechanics, heat transfer, mass transfer, separation processes, thermodynamics, kinetics, and process dynamics, as well as process economics and design of chemical processes.

The instructional laboratories provide opportunities for students to operate experimental equipment, to test the theories and correlations developed in the classroom, and to design their own experimental equipment for the solution of special problems.

Graduates are qualified to undertake work in research, design, development, production, maintenance, and technical sales in a wide variety of industries including chemicals, petroleum, petrochemicals, rubber, plastics, agricultural chemicals, food, biotechnology, pharmaceuticals, paper, fabrics, aircraft, automotive, electronics, energy conversion, and environmental pollution prevention and control.

The Department of Chemical and Biomolecular Engineering is located in Othmer Hall. A state-of-the-art unit operations laboratory, used to give hands-on chemical process experience, is located there. Laboratory equipment is provided for the study of fluid mechanics, heat transfer, mass transfer, staged operations, process control, thermodynamics, reaction kinetics, and polymerization. The department operates its own microcomputer facility. Additional research equipment is available for independent and graduate study in several areas.

Major Department Admission

To earn Professional Admission to the chemical engineering degree program, a student must complete a minimum of 43 credit hours applicable to the chemical engineering degree and complete CHME 202 Mass and Energy Balances with a grade of C- or higher. The student must have a cumulative GPA of 2.4 or higher to be professionally admitted. The faculty of the chemical and biomolecular engineering department reviews students for professional admission once they have earned 43 credit hours and completed CHME 202. A student may be reviewed twice for professional admission to chemical engineering. If the student is denied professional admission to chemical engineering twice, then the student will be required to change their major and will not be allowed to complete a chemical engineering degree. After the student is awarded professional admission to chemical engineering, they will be allowed to enroll in the appropriate 300- and 400-level engineering courses.

Other

University Honors Program

For those students who have been admitted to the University Honors Program, junior- and senior-level chemical and biomolecular engineering classes are available as honors-designated classes (i.e., CHME xxxH) on a “contract basis” between the student and the instructor with approval by the department faculty. The requirement of an honors thesis research project is fulfilled by completion of a minimum of 3 credits of CHME 499H Honors Thesis under the direction of a department faculty member. Additional information on the University Honors Program, including admission requirements, can be found in the Honors Program section.

College Requirements

College Admission

College Entrance Requirements

Students must have high school credit for (one unit is equal to one high school year):

1. Mathematics – 4 units: 2 of algebra, 1 of geometry, 1 of precalculus and trigonometry
2. English – 4 units
3. Natural sciences – 3 units that must include 1 unit of physics and 1 unit of chemistry (chemistry requirement waived for students in construction management)
4. Foreign language – 2 units of a single foreign language
5. Social studies – 3 units
6. Students having a composite ACT score of 28 or greater (or equivalent SAT score) will be admitted to the College of Engineering even if they lack any one of the following: trigonometry, chemistry, or physics.
7. Students having an ACT score of 19 or less in English (or equivalent SAT score) must take ENGL 150 Writing and Inquiry or ENGL 151 Writing and Argument.

A total of 16 units is required for admission.
Students must have an ACT (enhanced) score of 24 or greater (or equivalent SAT). Students who lack entrance requirements may be admitted based on ACT scores, high school rank and credits, or may be admitted to pre-engineering status in the Exploratory and Pre-Professional Advising Center. Pre-engineering students are advised within the College of Engineering.

Students for whom English is not their language of nurture must meet the minimum English proficiency requirements of the University.

Students who lack entrance units may complete precourse training by Independent Study through the University of Nebraska—Lincoln Office of On-line and Distance Education, in summer courses, or as a part of their first or second semester course loads while in the Exploratory and Pre-Professional Advising Center or other Colleges at Nebraska.

Students should consult their advisor, their department chair, or Engineering Student Services if they have questions on current policies.

Other Admission Requirements
Students who transfer to the University of Nebraska—Lincoln from other accredited colleges or universities and wish to be admitted to the College of Engineering (COE) must meet COE freshman entrance requirements and have a minimum cumulative GPA of 2.5, and be calculus-ready. Students not meeting either of these requirements must enroll in the Explore Center or another University college until they meet COE admission requirements. Students transferring from UNO, UNL, or UNK to the College of Engineering must be in good academic standing with their institution.

The COE accepts courses for transfer for which a C or better grade was received. Although the University of Nebraska—Lincoln accepts D grades from the University of Nebraska at Kearney and at Omaha, not all majors in the COE accept such low grades. Students must conform to the requirements of their intended major and, in any case, are strongly encouraged to repeat courses with a grade of C- or less.

All transfer students must adopt the curricular requirements of the undergraduate catalog current at the time of transfer to the COE—not that in use when they entered the University of Nebraska—Lincoln. Upon admission to Nebraska, students wishing to pursue degree programs in the COE will be classified and subject to the policies defined in the subsequent section.

Students who were previously admitted to COE and are returning to the College of Engineering must demonstrate a cumulative GPA of 2.5 in order to be readmitted to COE.

College Degree Requirements
Grade Rules
Grade Appeals
In the event of a dispute involving any college policies or grades, the student should appeal to his/her instructor, and appropriate department chair or school director (in that order). If a satisfactory solution is not achieved, the student may appeal his/her case through the College Academic Appeals Committee on his/her campus.

Catalog Rule
Students must fulfill the requirements stated in the catalog for the academic year in which they are first admitted at the University of Nebraska—Lincoln. In consultation with advisors, a student may choose to follow a subsequent catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at Nebraska in the College of Engineering. Students must complete all degree requirements from a single catalog year. The catalog which a student follows for degree requirements may not be more than 10 years old at the time of graduation.

Learning Outcomes
Graduates of the chemical engineering program will have:
1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. An ability to communicate effectively with a range of audiences.
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

The above student outcomes have been approved by the ABET Engineering Area Delegation for use beginning with the 2019-20 academic year, and have been adopted by the faculty of the Department of Chemical and Biomolecular Engineering.

Major Requirements
Specific Major Requirements
Any student in the chemical and biomolecular engineering program whose grade point average in required chemical and biomolecular engineering courses is less than 2.4 will be admitted to the required courses of the following year only with the special permission of the department.

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 113</td>
<td>Fundamental Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHME 113</td>
<td>Introduction to Chemical Engineering I</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 10</td>
<td>Freshman Engineering Seminar</td>
<td>0</td>
</tr>
<tr>
<td>MATH 106</td>
<td>Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>Oral</td>
<td>Communication Elective</td>
<td></td>
</tr>
<tr>
<td>Commun.</td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 100</td>
<td>Interpersonal Skills for Engineering Leaders</td>
<td></td>
</tr>
<tr>
<td>ALEC 102</td>
<td>Interpersonal Skills for Leadership</td>
<td></td>
</tr>
<tr>
<td>JGEN 300</td>
<td>Technical Communication II</td>
<td></td>
</tr>
<tr>
<td>COMM 286</td>
<td>Business and Professional Communication (SLO 2)</td>
<td></td>
</tr>
<tr>
<td>ACE Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours Subtotal:</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>
Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 114</td>
<td>Fundamental Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHME 114</td>
<td>Introduction to Chemical Engineering II</td>
<td>2</td>
</tr>
<tr>
<td>CSCE 155N</td>
<td>Computer Science I: Engineering and Science Focus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 107</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 211</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>Credit Hours Subtotal:</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Third Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 261</td>
<td>Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 263A</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHME 202</td>
<td>Mass and Energy Balances</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 20</td>
<td>Sophomore Engineering Seminar</td>
<td>0</td>
</tr>
<tr>
<td>MATH 208</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 212</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td>ACE Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours Subtotal:</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 262</td>
<td>Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 264A</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHME 223</td>
<td>Chemical Engineering Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 211</td>
<td>Elements of Electrical Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>JGEN 200</td>
<td>Technical Communication I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 221</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours Subtotal:</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Fifth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 221</td>
<td>Elementary Quantitative Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CHME 323</td>
<td>Chemical Engineering Thermodynamics and Kinetics</td>
<td>3</td>
</tr>
<tr>
<td>CHME 331</td>
<td>Equilibrium Stage Operations</td>
<td>3</td>
</tr>
<tr>
<td>CHME 332</td>
<td>Transport Operations I</td>
<td>3</td>
</tr>
<tr>
<td>ACE Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours Subtotal:</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Sixth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHME 312</td>
<td>Chemical Engineering Computation</td>
<td>3</td>
</tr>
<tr>
<td>CHME 330</td>
<td>Chemical Engineering Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td>CHME 333</td>
<td>Transport Operations II</td>
<td>3</td>
</tr>
<tr>
<td>CHME 434</td>
<td>Diffusional Operations</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours Subtotal:</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Advanced Chemistry/Chemical Engineering

Select one of the following:
- CHME 324 Molecular Processes and Applications
- CHEM 421 Analytical Chemistry
- CHEM 431 Structure and Metabolism
- CHEM 441 Inorganic Chemistry
- CHME 473 Biochemical Engineering

Credit Hours Subtotal: 15

Seventh Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHME 420</td>
<td>Chemical Process Safety</td>
<td>3</td>
</tr>
<tr>
<td>CHME 442</td>
<td>Chemical Reactor Engineering and Design</td>
<td>3</td>
</tr>
<tr>
<td>CHME 452</td>
<td>Chemical Engineering Process Economics and Optimization</td>
<td>3</td>
</tr>
<tr>
<td>CHME 462</td>
<td>Automatic Process Control</td>
<td>3</td>
</tr>
<tr>
<td>Technical Electives</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Eighth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHME 430</td>
<td>Chemical Engineering Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>CHME 453</td>
<td>Chemical Engineering Process Design and Safety</td>
<td>3</td>
</tr>
<tr>
<td>CHME 460</td>
<td>Automatic Process Control Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 460</td>
<td>Professional Ethics and Social Responsibilities</td>
<td>1</td>
</tr>
<tr>
<td>ACE Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours Subtotal:</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours: 131

1. The sequence CHEM 109, CHEM 110 is an acceptable alternative to CHEM 113, CHEM 114.
2. Choose one course each from ACE outcomes 5, 6, 7, 8, and 9 elective courses. BSEN 206, ACE 8, is not degree applicable.
3. The 6 hours of technical electives must be approved by the advisor.

Tracks/Options/Concentrations/Emphases Requirements

- Biotechnology/Bioengineering
- Environmental Engineering
- Materials Engineering
- Mathematics and Statistics

Technical Electives

The purpose of technical electives is to provide the student with an opportunity to gain new knowledge in an area of engineering or science beyond the basic undergraduate chemical engineering program. The technical electives may be in engineering design, engineering science, physical science, life science, and/or math.

- A minimum of 6 credit hours of technical electives are required.
- All technical electives must be approved by a departmental academic advisor prior to registration for the course.
- Students are expected to complete their technical elective requirements during their junior and senior years with corresponding level of courses.
- With the pre-approval of the student's academic advisor, a maximum of 3 credit hours of CHME 499 Senior Problems or CHME 499H Honors Thesis may be applied toward the technical electives requirement.
- Introductory 100-level courses are not accepted as technical electives.
- Advanced Placement (AP) high school classes are not allowed as technical electives.
- Courses lacking a quantitative physical science foundation such as accounting, marketing, economics, or law are normally not acceptable as technical electives.
- Students are strongly encouraged to select their technical electives from the following list. Course(s) may be taken outside of this...
list with approval of a departmental academic advisor prior to registration for the course.

Biotechnology/Bioengineering/Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHME 412 /</td>
<td>Introduction to Atomistic Simulations</td>
<td>3</td>
</tr>
<tr>
<td>CHME 812</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 431 /</td>
<td>Structure and Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 831 /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 431 /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 431 /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 831</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 432 /</td>
<td>Metabolism and Biological Information</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 832 /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 432 /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 432 /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 832</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 441</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 471</td>
<td>Physical Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 481</td>
<td>Physical Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 482</td>
<td>Physical Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 486 /</td>
<td>Advanced Topics in Biophysical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 886 /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOC 486 /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 486 /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 886</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHME 470</td>
<td>Biomanufacturing Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CHME 473 /</td>
<td>Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHME 873</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHME 474 /</td>
<td>Advanced Biochemical Engineering</td>
<td>2-6</td>
</tr>
<tr>
<td>CHME 874</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHME 475 /</td>
<td>Biochemical Separations</td>
<td>3</td>
</tr>
<tr>
<td>CHME 875</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHME 476 /</td>
<td>Micro/Nano systems for Engineering and</td>
<td>3</td>
</tr>
<tr>
<td>CHME 876</td>
<td>Life Sciences</td>
<td></td>
</tr>
<tr>
<td>CHME 477 /</td>
<td>Molecular Bioengineering</td>
<td>3</td>
</tr>
<tr>
<td>CHME 877</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 312</td>
<td>Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 206</td>
<td>General Genetics</td>
<td>4</td>
</tr>
<tr>
<td>BIOS 213</td>
<td>Human Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 214</td>
<td>Human Anatomy</td>
<td>5</td>
</tr>
</tbody>
</table>

Environmental Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSEN 455 /</td>
<td>Nonpoint Source Pollution Control</td>
<td>3</td>
</tr>
<tr>
<td>BSEN 855 /</td>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>CIVE 455 /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHME 489 /</td>
<td>Air Pollution, Assessment and Control</td>
<td>3</td>
</tr>
<tr>
<td>CHME 889</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 326 /</td>
<td>Introduction to Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BSEN 326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 327 /</td>
<td>Environmental Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BSEN 327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 421 /</td>
<td>Hazardous Waste Management and Treatment</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 821</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 422 /</td>
<td>Pollution Prevention: Principles and</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 822 /</td>
<td>Practices</td>
<td></td>
</tr>
<tr>
<td>BSEN 422 /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEN 822</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 424 /</td>
<td>Solid Waste Management Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 824</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 421 /</td>
<td>Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 821</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 423 /</td>
<td>Analytical Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 823</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVR 491</td>
<td>Environmental Studies Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Materials Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHME 482 /</td>
<td>Polymers</td>
<td>3</td>
</tr>
<tr>
<td>CHME 882</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATL 360</td>
<td>Elements of Materials Science</td>
<td>4</td>
</tr>
<tr>
<td>MATL 460</td>
<td>Mechanical Aspects of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MATL 462</td>
<td>X-ray Diffraction</td>
<td>3</td>
</tr>
<tr>
<td>MATL 862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATL 469 /</td>
<td>Physical Materials Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATL 869</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATL 471 /</td>
<td>Electron Microscopy of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MATL 871</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATL 473 /</td>
<td>Corrosion</td>
<td>3</td>
</tr>
<tr>
<td>MATL 873</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 325</td>
<td>Mechanics of Elastic Bodies</td>
<td>3</td>
</tr>
<tr>
<td>MECH 381</td>
<td>Elements of Computer-Aided Design</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 422 /</td>
<td>Introduction to Physics and Chemistry of</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 822 /</td>
<td>Solids</td>
<td></td>
</tr>
<tr>
<td>ECEN 422 /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECEN 822</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mathematics and Statistics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 314 /</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 814</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 322 /</td>
<td>Advanced Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 822</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 424 /</td>
<td>Introduction to Partial Differential</td>
<td>3</td>
</tr>
<tr>
<td>MATH 824</td>
<td>Equations</td>
<td></td>
</tr>
<tr>
<td>STAT 380</td>
<td>Statistics and Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional Major Requirements

Grade Rules

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any student in the chemical and</td>
<td></td>
</tr>
<tr>
<td>biomolecular engineering program</td>
<td></td>
</tr>
<tr>
<td>whose grade point average in</td>
<td></td>
</tr>
<tr>
<td>required chemical and biomolecular</td>
<td></td>
</tr>
<tr>
<td>engineering courses is less than</td>
<td></td>
</tr>
<tr>
<td>2.4 will need special permission</td>
<td></td>
</tr>
<tr>
<td>of the department to be admitted to</td>
<td></td>
</tr>
<tr>
<td>the required CHME courses the</td>
<td></td>
</tr>
<tr>
<td>following year.</td>
<td></td>
</tr>
</tbody>
</table>

CHME 113 Introduction to Chemical Engineering I

Description: The profession of chemical engineering. Chemical engineers’ impact on today’s societal issues, team problem solving, communication skills, and the introduction of chemical process flow sheets.

Credit Hours: 2

Max credits per semester: 2

Max credits per degree: 2

Format: LEC
CHME 114 Introduction to Chemical Engineering II
Prerequisites: MATH 106 or parallel, CHEM 113 or CHEM 109 or parallel
Description: Analytical and computational methods for solving problems related to chemical process measurements, properties of single compounds, properties of mixtures, stoichiometry.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LEC
Prerequisite for: CHME 202

CHME 202 Mass and Energy Balances
Prerequisites: CHEM 113; a grade of C- or better in CHME 114; MATH 107 or parallel.
Description: Application of the principle of conservation of mass and energy in the analysis of steady-state chemical processes. Topics in physical, chemical, and thermal property estimation.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CHME 223

CHME 223 Chemical Engineering Thermodynamics I
Prerequisites: A grade of C- or better in CHME 202.
Description: Application of the three fundamental laws to chemical engineering problems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CHME 331

CHME 312 Chemical Engineering Computation
Prerequisites: MATH 221, CSCE 155N
Description: Computational methods in orthogonal polynomials, numerical integration, matrix operations and ordinary differential equations as they apply to chemical engineering problems such as separations, reactor design, transport operations and control.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CHME 331

CHME 323 Chemical Engineering Thermodynamics and Kinetics
Prerequisites: CHME 223
Description: Application to multi-component systems; thermodynamics, phase equilibria, chemical reaction equilibria, and process analysis.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CHME 324; CHME 805; CHME 825; CHME 845; CHME 847; CHME 935; CHME 995

CHME 324 Molecular Processes and Applications
Prerequisites: CHME 323 or parallel
Description: Microscopic processes, such as statistical thermodynamics and molecular kinetics are introduced. Emphasis is placed on an engineering approach to developing problem-solving skills in systems requiring molecular-level understanding.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHME 330 Chemical Engineering Laboratory I
Prerequisites: CHME 331, 332; CHME 333 or parallel
Description: Selected experiments in chemical engineering thermodynamics, heat and momentum transfer, and separations. Emphasis on interpretation of results and written reports.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHME 331 Equilibrium Stage Operations
Prerequisites: MATH 107; CHME 223
Description: Phase equilibrium and mass and energy balances applied to staged mass transfer operations.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CHME 330

CHME 332 Transport Operations I
Crosslisted with: CHME 832
Prerequisites: MATH 208; CHME 223
Description: Mass, momentum and energy transport phenomena and their application in chemical engineering.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: AGEN 325, BSEN 325; AGEN 344, BSEN 344; CHME 330; CHME 333, CHME 833; CHME 420; CHME 835

CHME 333 Transport Operations II
Crosslisted with: CHME 833
Prerequisites: CHME 332
Description: Continuation of CHME 332/832.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CHME 475, CHME 875; CHME 815; CHME 835; CHME 935, CHME 995

CHME 412 Introduction to Atomistic Simulations
Crosslisted with: CHME 812
Prerequisites: Senior standing
Description: Theory and application of quantum-based computational methods used to model, predict and analyze materials properties.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
CHME 420 Chemical Process Safety
Prerequisites: CHME 332
Description: Introduction to chemical process safety with topics emphasizing industrial hygiene, toxicology, hazard identification, inherently safer design, and engineering controls.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL/SPR

CHME 430 Chemical Engineering Laboratory II
Crosslisted with: CHME 830
Prerequisites: CHME 330; CHME 442 or parallel; CHME 462 or parallel.
Parallel: CHME 460.
Description: Selected experiments in chemical engineering. Emphasis on experimental design, interpretation of results, and formal oral and written presentation.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LAB

CHME 434 Diffusional Operations
Crosslisted with: CHME 834
Prerequisites: CHME 332
Description: Application of diffusional theory to the design of processing equipment required for absorption, adsorption, leaching, drying, and chemical reactions.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHME 442 Chemical Reactor Engineering and Design
Crosslisted with: CHME 842
Prerequisites: CHME 323
Description: Basic principles of chemical kinetics are coupled with models descriptive of rates of energy and mass transfer for the analysis and design of reactor systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CHME 845

CHME 447 Principles and Applications of Catalysis in Reaction Engineering
Crosslisted with: CHME 847
Prerequisites: CHME 323.
Description: Principles and applications of heterogeneous catalysis, mechanisms, catalytic reactor types and catalyst characterization and performance. Case studies on current catalytic technologies.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHME 452 Chemical Engineering Process Economics and Optimization
Crosslisted with: CHME 852
Prerequisites: CHME 333, CHME 331, CHME 434
Notes: Credit toward the degree may be earned only in CHME 452/852
Description: Criteria of chemical process economics: cost and asset accounting, time value of money, profitability, alternative investments, minimum attractive rate of return, sensitivity and risk analysis. Process optimization in: plant operations, unit operations, using successive calculations, linear programming and dynamic programming.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

ACE: ACE 10 Integrated Product

CHME 453 Chemical Engineering Process Design and Safety
Crosslisted with: CHME 853
Prerequisites: CHME 452
Description: Design, evaluation, and safety considerations of chemical engineering process applications.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHME 454 Chemical Process Engineering
Crosslisted with: CHME 854
Prerequisites: CHME 430 and 312.
Description: Practical and theoretical aspects of chemical process analysis, simulation, and synthesis. Case studies used to illustrate principles. Use of the digital computer as a tool of the process engineer is stressed.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHME 460 Automatic Process Control Laboratory
Crosslisted with: CHME 860
Prerequisites: CHME 462 or parallel. Parallel: CHME 430.
Description: Selected laboratory experiments to demonstrate the theory of the dynamics and control of chemical processes.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LAB

CHME 462 Automatic Process Control
Crosslisted with: CHME 862
Prerequisites: MATH 221, CHME 333
Description: Analysis and design of automatic control systems. Dynamic responses of measuring instruments, control elements, stability of control systems, and process equipment included in control loops.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CHME 965
CHME 470 Biomanufacturing Laboratory
Prerequisites: CHME 473
Description: Selected experiments in molecular biology, bioprocess development, fermentation, purification, and analytical methods as they pertain to biomanufacturing.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHME 473 Biochemical Engineering
Crosslisted with: CHME 873
Prerequisites: CHEM 262, CHEM 431
Description: Dynamics of microbial growth and death. Engineering processes for microbiological synthesis of cellular materials and industrial products, with emphasis on food and pharmaceutical production by bacteria and fungi.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CHME 470, CHME 474, CHME 874

CHME 474 Advanced Biochemical Engineering
Crosslisted with: CHME 874
Prerequisites: CHME 473/873.
Description: Recent theoretical and technical developments in biochemical engineering.
Credit Hours: 3-6
Min credits per semester: 2
Max credits per semester: 6
Max credits per degree: 6
Format: LEC

CHME 475 Biochemical Separations
Crosslisted with: CHME 875
Prerequisites: CHME 333/833
Description: Separation and purification of compounds of biological origin from an analytical perspective. Application of unit operations for these separations.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHME 476 Micro/Nano systems for Engineering and Life Sciences
Crosslisted with: CHME 876
Prerequisites: Senior standing
Description: Introduction to a number of biological problems facing living systems and how micro/nanotechnology is being used to solve those problems. Emphasis on engineering perspectives of the life sciences.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHME 477 Molecular Bioengineering
Crosslisted with: CHME 877
Prerequisites: Senior standing or permission.
Description: Introduction to fundamentals and up-to-date developments in the field of bioengineering at the molecular level. Topics to cover include recombinant DNA methods, protein engineering, microbial cell factories, synthetic and systems biology, DNA and protein therapeutics.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL/SPR

CHME 482 Polymers
Crosslisted with: CHME 882
Prerequisites: CHEM 262, 264 or 264A, and MATH 221
Description: Introduction to polymer technology stressing polymerization kinetics, methods of resin manufacture and applications.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHME 486 Electrochemical Engineering
Crosslisted with: CHME 886
Prerequisites: CHME 333, and CHME 442, or MECH 310 and MATL 360.
Description: Thermodynamic and kinetic principles of electrochemistry are applied to the design and analysis of electrochemical processes, including chemical production, batteries, fuel cells, and corrosion prevention.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHME 489 Air Pollution, Assessment and Control
Crosslisted with: CHME 889
Prerequisites: Senior standing
Description: Survey of the present status of the air pollution problem and the application of engineering and scientific principles to its practical and effective coordinated control.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHME 496 Advanced Topics in Chemical Engineering Computation
Crosslisted with: CHME 896
Prerequisites: CHME 312 or CSCE 455/855 or MECH 480/880, and permission.
Description: Intensive treatment of special topics of current research interest in such areas as steady-state and dynamic process simulation, design optimization, chemical process synthesis, computer-aided product research, stochastic optimization, and numerical methods applied to transport problems.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Format: LEC
Prerequisite for: CHME 915
CHME 499 Senior Problems
Prerequisites: Senior standing in chemical engineering.
Description: Research and development problems which include literature surveys, equipment design and operation, and development of correlations.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Format: IND

CHME 499H Honors Thesis
Prerequisites: Senior standing in chemical engineering, admission to the University Honors Program.
Description: Honors thesis research project meeting the requirements of the University Honors Program. Independent research project executed under the guidance of a member of the faculty of the Department of Chemical Engineering which contributes to the advancement of knowledge in the field. Culminates in the presentation of an honors thesis to the department and college.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Format: IND

PLEASE NOTE
This document represents a sample 4-year plan for degree completion with this major. Actual course selection and sequence may vary and should be discussed individually with your college or department academic advisor. Advisors also can help you plan other experiences to enrich your undergraduate education such as internships, education abroad, undergraduate research, learning communities, and service learning and community-based learning.

Career Information
The following represents a sample of the internships, jobs and graduate school programs that current students and recent graduates have reported.

Jobs of Recent Graduates
- Production Engineer, Archer Daniels Midland - Decatur IL
- Project Engineer, Cargill - Blair NE
- Process Engineer, ExxonMobil Chemical - Beaumont TX
- Process Engineer, Becton Dickinson - Columbus NE
- Assistant Chemical Engineer, Burns and McDonnell - Kansas City MO
- Engineer, Hospira - McPherson KS
- Process Engineer, Koch Industries - Wichita KS
- Chemical Engineer I, Black & Veatch - Kansas City KS
- Process Engineer, POET - Sioux Falls SD
- Environmental Operations Process Engineer, Syngenta Crop Protection LLC - Baton Rouge LA
- Process Engineer, Vishay Intertechnologies - Columbus NE
- Optimized Operations Engineer, 3M - Nevada MO
- Design Engineer, Chevron - Richmond CA
- Process Engineer, ConAgra - Council Bluffs IA
- Associate Maintenance Engineer, Hormel Foods - Lincoln NE
- Manufacturing Engineer, Procter & Gamble - Cape Girardeau MO
- Project Engineer, Streck - Omaha NE
- Process Engineer, DuPont Industrial Biosciences - Cedar Rapids IA
- Process Engineer, Green Plains Renewable Energy - Omaha NE
- Chemical Engineer, Barr Engineering - Salt Lake City UT
- Research & Design Engineer, Hexagon Lincoln - Lincoln NE
- Process Engineer, Novozymes - Blair NE
- Environmental Engineer, CDM Smith - Kansas City MO
- Leadership Development Program, Ardent Mills - Hastings MN
- Quality Engineer, Eaton Corporation - Cleveland OH

Internships
- Chemical Engineering Co-op, UTC Aerospace - York NE
- Chemical Engineering Co-op, ExxonMobil - Houston TX
- EO&T Materials and Process Engineering Intern, The Boeing Company - Seattle WA
- Chemical Engineering Intern, Black & Veatch - Leawood KS
- Maintenance and Reliability Intern, Novozymes - Blair NE
- Soil Sensor Surveyor, Partners in Pollution Prevention - Lincoln NE
- Animal Protein Engineer Intern, Cargill - Schuyler NE
- Production Engineering Intern, Archer Daniels Midland - Fremont NE
- Process Engineer, Koch Fertilizer - Wichita KS
- Sales Engineering Intern, Cleaver Brooks - Lincoln NE
- Chemical Engineering Co-op, UTC Aerospace - York NE
- EO&T Materials and Process Engineering Intern, The Boeing Company - Seattle WA
- Chemical Engineering Intern, Black & Veatch - Leawood KS
- Maintenance and Reliability Intern, Novozymes - Blair NE
- Soil Sensor Surveyor, Partners in Pollution Prevention - Lincoln NE
- Animal Protein Engineer Intern, Cargill - Schuyler NE
- Production Engineering Intern, Archer Daniels Midland - Fremont NE
- Process Engineer, Koch Fertilizer - Wichita KS
- Sales Engineering Intern, Cleaver Brooks - Lincoln NE

Graduate & Professional Schools
- Doctor of Medicine, University of Nebraska Medical Center - Omaha NE
- Ph.D. Chemical Engineering, Stanford University - Palo Alto CA
- Chemical & Biomolecular Engineering, Ph.D., University of Nebraska-Lincoln - Lincoln NE
- Juris Doctor, University of Nebraska-Lincoln College of Law - Lincoln NE
- Petroleum Engineering, Ph.D., Texas A&M University - College Station TX
- Chemical Engineering, Ph.D., University of Pittsburgh - Pittsburgh PA
- Materials Science, Ph.D., University of California-Santa Barbara - Santa Barbara CA
- Materials Science, Ph.D., University of Wisconsin - Madison NE
- Science Teaching, M.A., University of Nebraska-Lincoln - Lincoln NE