Biological Systems Engineering

Description
Website: http://bsen.unl.edu/

Biological systems engineering (BSEN) is one of two engineering degree programs offered in the Department of Biological Systems Engineering. BSEN students emphasize engineering coursework in one of three areas: biomedical engineering, bioenergy and food engineering, or environmental and water resources engineering. A biological systems engineer could work on systems to micropropagate tissue culture, develop biomaterials and biofibers, design equipment and processes for producing foods and biofuels, or design devices for monitoring and correcting heart arrhythmias. Still another could be responsible for developing biological sensors and imaging devices for detecting diseases in humans, for measuring plant and animal stress, or for controlling the environment of greenhouses and animal facilities. Biological systems engineers could also be involved in resolving environmental issues associated with waste management, water quality and sustainable energy production. Job opportunities for graduates are available in industry, public agencies, consulting, and private practice. A significant number of graduates pursue graduate school, medical school, or other professional schools such as law, nursing, or engineering business management.

By two to six years after graduation, BSEN alumni will share the attribute of improving the organization for which they work, and the community and country in which they live. They will do this whether they are involved in biomedical engineering, environmental or water resources engineering, bioenergy and food engineering, or other professional endeavors such as business, law or medicine. In doing so, they will:

- provide innovative and effective solutions to problems in a variety of work environments through the use of their unique background in biological systems engineering and the biological sciences;
- look beyond components in isolation thereby providing holistic solutions to complex issues involving (for example) interactions at the ecosystem, organism, organ, cellular or subcellular level;
- think logically using appropriate elements of mathematics, science, and engineering to develop, manage, and interpret data, to correctly interpret new research findings, and to design new systems for the benefit of society;
- successfully integrate technical knowledge with organizational, listening, communication, and interpersonal skills to lead and work effectively in teams, and to respectfully articulate the role of engineering decisions in the workplace, community, and world;
- responsibly address issues such as health and safety, personal and professional ethics, cultural diversity, as well as the social, environmental, and global impacts of their work; and
- continue their personal growth, professional development, and professional and community service through various opportunities provided by institutions, professional organizations and other venues.

Students benefit from small classes and personal acquaintances with faculty. In consultation with their advisor, students select electives that permit specialization in an emphasis area applicable to their career aspirations. Many students work part-time on departmental research projects, gaining valuable experience for employment in industry and for graduate or professional studies. Students also benefit from summer jobs, internships and co-op programs. These opportunities give students practical experience to learn about careers in engineering. Students also gain valuable experience through participation in professional organizations such as the American Society of Agricultural and Biological Engineers, the Water and Environmental Federation, the Soil and Water Resources Club, the Biomedical Engineering Society, the Nebraska Society of Professional Engineers and the Society for Women Engineers.

Major Department Admission

Pre-professionally admitted College of Engineering (COE) students majoring in biological systems engineering (BSEN) have their records examined for advancement to professionally admitted status during the fall, spring, and summer immediately following the term in which the student meets the following criteria: completion of 43 or more credits applicable to the degree including 6 hours of BSEN subject coursework, and enrollment in or completion of MECH 223. Students must be professionally admitted in order to enroll in some upper-division courses including AGEN 470/BSEN 470 Design I in Agricultural and Biological Systems Engineering.

To be professionally admitted to BSEN, the student must meet the general Professional Admission criteria of the College of Engineering (i.e., completion of at least one semester in the College, a cumulative GPA of 2.5 or greater, and not having been already declined admission by two other engineering majors or twice by the BSEN program), and have removed all admissions deficiencies within the first 30 hours of enrollment at Nebraska except for the foreign language deficiency, which must be completed within the first 60 hours of enrollment at the University of Nebraska—Lincoln.

Students who meet the above criteria with a cumulative GPA of 2.8 or greater will be professionally admitted without further review by Department faculty. Students with a cumulative GPA of at least 2.5 but less than 2.8 will have their record reviewed by Department faculty for a decision of professional admission or provisional professional admission. Students with a cumulative GPA less than 2.5 will be denied professional admission to the BSEN program. Students who have been denied professional admission to the BSEN program once and not also been denied professional admission to another engineering program may continue taking courses in the BSEN program and will be reconsidered for professional admission again after the next term. Students who have twice been denied professional admission to the BSEN program are not allowed to continue in the program.

The Department faculty may recommend provisional admission and specify deficiencies and performance criteria required to transition out of provisional status. If a student has not met the admission criteria and has not, in the opinion of the Department faculty, demonstrated a minimum standard of good professional judgment in the pursuit of their academic program as expected of degreed engineers, they may be denied
professional admission to the degree program. The student may appeal this decision to the biological systems engineering department head and then, if necessary, to the College of Engineering Curriculum and Academic Standards Committee.

College Requirements

College Admission

College Entrance Requirements

Students must have high school credit for (one unit is equal to one high school year):

1. Mathematics – 4 units: 2 of algebra, 1 of geometry, 1 of precalculus and trigonometry
2. English – 4 units
3. Natural sciences – 3 units that must include 1 unit of physics and 1 unit of chemistry (chemistry requirement waived for students in construction management)
4. Foreign language – 2 units of a single foreign language
5. Social studies – 3 units
6. Students having a composite ACT score of 28 or greater (or equivalent SAT score) will be admitted to the College of Engineering even if they lack any one of the following: trigonometry, chemistry, or physics.
7. Students having an ACT score of 19 or less in English (or equivalent SAT score) must take ENGL 150 Writing and Inquiry or ENGL 151 Writing and Argument.

A total of 16 units is required for admission.

Students must have an ACT (enhanced) score of 24 or greater (or equivalent SAT). Students who lack entrance requirements may be admitted based on ACT scores, high school rank and credits, or may be admitted to pre-engineering status in the Exploratory and Pre-Professional Advising Center. Pre-engineering students are advised within the College of Engineering.

Students for whom English is not their language of nurture must meet the minimum English proficiency requirements of the University.

Students who lack entrance units may complete precollege training by Independent Study through the University of Nebraska–Lincoln Office of On-line and Distance Education, in summer courses, or as a part of their first or second semester course loads while in the Exploratory and Pre-Professional Advising Center or other Colleges at Nebraska.

Students should consult their advisor, their department chair, or Engineering Student Services if they have questions on current policies.

Other Admission Requirements

Students who transfer to the University of Nebraska–Lincoln from other accredited colleges or universities and wish to be admitted to the College of Engineering (COE) must meet COE freshman entrance requirements and have a minimum cumulative GPA of 2.5, and be calculus-ready. Students not meeting either of these requirements must enroll in the Explore Center or another University college until they meet COE admission requirements. Students transferring from UNO, UNL, or UNK to the College of Engineering must be in good academic standing with their institution.

The COE accepts courses for transfer for which a C or better grade was received. Although the University of Nebraska–Lincoln accepts D grades from the University of Nebraska at Kearney and at Omaha, not all majors in the COE accept such low grades. Students must conform to the requirements of their intended major and, in any case, are strongly encouraged to repeat courses with a grade of C- or less.

All transfer students must adopt the curricular requirements of the undergraduate catalog current at the time of transfer to the COE—not that in use when they entered the University of Nebraska–Lincoln. Upon admission to Nebraska, students wishing to pursue degree programs in the COE will be classified and subject to the policies defined in the subsequent section.

Students who were previously admitted to COE and are returning to the College of Engineering must demonstrate a cumulative GPA of 2.5 in order to be readmitted to COE.

College Degree Requirements

Grade Rules

Students must fulfill the requirements stated in the catalog for the academic year in which they are first admitted at the University of Nebraska–Lincoln. In consultation with advisors, a student may choose to follow a subsequent catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at Nebraska in the College of Engineering. Students must complete all degree requirements from a single catalog year. The catalog which a student follows for degree requirements may not be more than 10 years old at the time of graduation.

Catalog Rule

Graduates of the biological systems engineering program will have:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. An ability to communicate effectively with a range of audiences.
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
The above student outcomes have been approved by the ABET Engineering Area Delegation for use beginning with the 2019-20 academic year, and have been adopted by the faculty of the Department of Biological Systems Engineering.

Major Requirements

Specific Major Requirements

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code 1</th>
<th>Course Title 1</th>
<th>Credit Hours 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>BSEN 100</td>
<td>Introduction to Biological Engineering and Agricultural Engineering</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>AGEN 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 113</td>
<td>Fundamental Chemistry I 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGR 10</td>
<td>Freshman Engineering Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MATH 106</td>
<td>Calculus I</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CSCE 155N</td>
<td>Computer Science I: Engineering and Science Focus</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGR 100</td>
<td>Interpersonal Skills for Engineering Leaders</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Second Semester</td>
<td>BSEN 112</td>
<td>Computer-Aided Problem-Solving</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>AGEN 112</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 114</td>
<td>Fundamental Chemistry II 2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 107</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 211</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BSEN 130</td>
<td>Computer-Aided Design</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Third Semester</td>
<td>BSEN 225</td>
<td>Engineering Properties of Biological Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AGEN 225</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 251 & CHEM 253</td>
<td>Organic Chemistry I and Organic Chemistry I Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 255 & CHEM 257</td>
<td>Biological Organic Chemistry and Biological Organic Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 261 & CHEM 263</td>
<td>Organic Chemistry and Organic Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGR 20</td>
<td>Sophomore Engineering Seminar</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PHYS 212</td>
<td>General Physics II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 208</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MECH 223</td>
<td>Engineering Statics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Fourth Semester</td>
<td>BSEN 260</td>
<td>Instrumentation I for Agricultural and Biological Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BSEN 244</td>
<td>Thermodynamics of Living Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>LIFE 120 & LIFE 120L</td>
<td>Fundamentals of Biology I and Fundamentals of Biology I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 221</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH 373</td>
<td>Engineering Dynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Fifth Semester</td>
<td>LIFE 121 & LIFE 121L</td>
<td>Fundamentals of Biology II and Fundamentals of Biology II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MECH 310 or CIVE 310</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BSEN 460 / AGEN 460</td>
<td>Instrumentation and Controls</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>JGEN 200</td>
<td>Technical Communication I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BSEN Emphasis Elective:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select 3 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Sixth Semester</td>
<td>BIOC 401</td>
<td>Elements of Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BSEN 344 / AGEN 344</td>
<td>Biological and Environmental Transport Processes</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Statistics Elective:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MECH 321</td>
<td>Engineering Statistics and Data Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STAT 380</td>
<td>Statistics and Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACE Elective:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one course from not yet satisfied ACE outcomes 5, 6, 7, or 9</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BSEN Emphasis Elective:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select 3 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Seventh Semester</td>
<td>BSEN 261 / CIVE 206</td>
<td>Engineering Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BSEN 470 / AGEN 470</td>
<td>Design I in Agricultural and Biological Systems Engineering</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ACE Electives:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select two courses from not yet satisfied ACE outcomes 5, 6, 7, or 9</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>BSEN Emphasis Elective:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select 3 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biological or Science Emphasis Elective:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select 3 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Eighth Semester</td>
<td>BSEN 480 / AGEN 480</td>
<td>Design II in Agricultural and Biological Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ACE Elective:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one course from not yet satisfied ACE outcomes 5, 6, 7, or 9</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BSEN Emphasis Elective:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select 3 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering or Science Emphasis Elective:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select 3 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Emphasis Elective:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select 3 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Total Credit Hours: 127

1 CHEM 109 may be substituted with permission of advisor.
2 CHEM 110 may be substituted with permission of advisor.
3 BIOS 203 is not acceptable.
Emphasis Area Requirements

An emphasis area requires a student to take 18 hours of engineering and science-based courses. A minimum of 15 hours must be selected from courses offered by the College of Engineering. Within the 15 hours, a minimum of 12 hours must be BSEN courses or engineering courses crosslisted with BSEN. Of the BSEN or BSEN crosslisted courses, one must be a 300-level course of a primary emphasis area, one must be a 300-level course of a secondary emphasis area and one must be a 400-level course of a primary emphasis area. Water and Environment emphasis requires BSEN 350 Soil and Water Resources Engineering and either BSEN 326 Introduction to Environmental Engineering or BSEN 355 Introduction to Ecological Engineering. Bioenergy and Food emphasis requires BSEN 303 Principles of Process Engineering, and Biomedical emphasis requires BSEN 317 Introduction to Biomedical Engineering as primary emphasis area courses.

BSEN Primary Emphasis Area Courses

Bioenergy and Food

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSEN 303</td>
<td>Principles of Process Engineering</td>
<td>3</td>
</tr>
<tr>
<td>AGEN 303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEN 446</td>
<td>Unit Operations of Biological Processing</td>
<td>3</td>
</tr>
<tr>
<td>AGEN 446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEN 444</td>
<td>Biomass and Bioenergy Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 9

Biomedical

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSEN 317</td>
<td>Introduction to Biomedical Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSEN 311</td>
<td>Biomedical Signal and System Analysis</td>
<td></td>
</tr>
<tr>
<td>BSEN 414</td>
<td>Medical Imaging Systems</td>
<td></td>
</tr>
<tr>
<td>BSEN 416</td>
<td>Introduction to Biomaterials</td>
<td></td>
</tr>
<tr>
<td>BSEN 418</td>
<td>Tissue Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 6

Water and Environment

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSEN 350</td>
<td>Soil and Water Resources Engineering</td>
<td>3</td>
</tr>
<tr>
<td>AGEN 350</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSEN 326</td>
<td>Introduction to Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>CIVE 326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEN 355</td>
<td>Introduction to Ecological Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSEN 441</td>
<td>Animal Waste Management</td>
<td></td>
</tr>
<tr>
<td>AGEN 441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEN 453</td>
<td>Irrigation and Drainage Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>AGEN 453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEN 455</td>
<td>Nonpoint Source Pollution Control Engineering</td>
<td></td>
</tr>
<tr>
<td>CIVE 455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEN 458</td>
<td>Groundwater Engineering</td>
<td></td>
</tr>
<tr>
<td>CIVE 458</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 9

Additional Major Requirements

Grade Rules

A grade of C- or better is required for all biological systems engineering required courses and electives that are to count toward graduation, with the exception of ACE 5, 6, 7, and 9 electives.

Catalog to Use

In addition to the “Catalog Rule” of the College of Engineering, students transferring into the Department of Biological Systems Engineering must follow the catalog in effect at the time of their transfer into the department.

BSEN 100 Introduction to Biological Engineering and Agricultural Engineering

Crosslisted with: AGEN 100

Description: Description of careers in biomedical, environmental, water resources, food and bioproducts, and agricultural engineering. The human, economic and environmental impacts of engineering in society. Communication, design, teamwork, and the role of ethics and professionalism in engineering work.

Credit Hours: 1

Max credits per semester: 1

Max credits per degree: 1

Format: LEC

BSEN 112 Computer-Aided Problem-Solving

Crosslisted with: AGEN 112

Prerequisites: MATH 106 or parallel.

Description: Problem solving techniques and procedures through the use of Excel, MATLAB, and graphical methods. Emphasis on problem/solution communications with topics and problems from agricultural engineering and biological systems engineering.

Credit Hours: 2

Max credits per semester: 2

Max credits per degree: 2

Format: LEC

Offered: SPRING

Prerequisite for: BSEN 212A, AGEN 212A; BSEN 212B, AGEN 212B; BSEN 212E, AGEN 212E

BSEN 130 Computer-Aided Design

Crosslisted with: CIVE 130

Description: Use of computer-aided design software to communicate engineering ideas. Specifications, dimensioning, tolerancing, 2- and 3D model development, topographic mapping, and process layout with environmental, bioprocess, and biomedical emphases.

Credit Hours: 2

Max credits per semester: 2

Max credits per degree: 2

Format: LEC

Prerequisite for: MECH 343

ACE: ACE 8 Civic/Ethics/Stewardship

BSEN 206 Engineering Economics

Crosslisted with: CONE 206

Prerequisites: Sophomore standing

Description: Introduction to methods of economic comparisons of engineering alternatives: time value of money, depreciation, taxes, concepts of accounting, activity-based costing, ethical principles, civics and stewardship, and their importance to society.

Credit Hours: 3

Max credits per semester: 3

Max credits per degree: 3

Format: LEC

Prerequisite for: MECH 343

ACE: ACE 8 Civic/Ethics/Stewardship
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Offered</th>
<th>Format</th>
<th>Max credits per semester</th>
<th>Max credits per degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSEN 212A</td>
<td>Computational Tools & Modeling for Agricultural & Biological Systems Eng: MATLAB</td>
<td>AGEN 212A; AGEN/BSEN 112</td>
<td>SPRING</td>
<td>LEC</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Crosslisted with: AGEN 212A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: AGEN/BSEN 112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Introduction to tools needed to develop computation-intense solutions for a wide variety of problems relevant to agricultural and biological systems engineering. Advanced problem solving techniques are illustrated using examples of scripts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 1 Max credits per semester: 1 Max credits per degree: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEN 212B</td>
<td>Computational Tools & Modeling for Ag & Biological Sys Engr: Control Systems</td>
<td>AGEN 212B; AGEN/BSEN 112</td>
<td>SPRING</td>
<td>LEC</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Crosslisted with: AGEN 212B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: AGEN/BSEN 112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: This is a 5-week mini-course in which the lab time entails a combination of a 2nd lecture and followup laboratory applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Introduction to microcontroller based embedded systems for agricultural and biological applications. Fundamental principles of microcontrollers and embedded systems through binary and hexadecimal number systems, digital logic, programming in integrated development environment, and microcontroller peripherals. Common agricultural and biological microcontroller input and output devices.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 1 Max credits per semester: 1 Max credits per degree: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEN 212E</td>
<td>Computational Tools & Modeling for Agricultural & Biological Systems Eng: LabVIEW</td>
<td>AGEN 212E; AGEN/BSEN 112</td>
<td>SPRING</td>
<td>LEC</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Crosslisted with: AGEN 212E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: AGEN/BSEN 112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Introduction to tools needed to develop computation-intense solutions for a wide variety of problems relevant to agricultural and biological systems engineering. Advanced problem solving techniques are illustrated using examples of scripts, simulation methods, graphical programming, and their combination.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 1 Max credits per semester: 1 Max credits per degree: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEN 225</td>
<td>Engineering Properties of Biological Materials</td>
<td>AGEN 225; MATH 106</td>
<td>FALL/SPR</td>
<td>LEC</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Crosslisted with: AGEN 225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: MATH 106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Physical properties important to the design of harvesting, storage, and processing systems for agricultural crops; principles and techniques for measurement of properties including frictional effects, particle size, strength, moisture content, specific heat, and thermal conductivity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEN 244</td>
<td>Thermodynamics of Living Systems</td>
<td>CHEM 110 or 114; MATH 107; PHYS 211; LIFE 120 or parallel</td>
<td>SPRING</td>
<td>LEC</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Crosslisted with: AGEN 244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: AGEN 244 or parallel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Introduction to the laws of thermodynamics and their application to biological and environmental systems. Zeroth, first, second, and third laws; open and closed systems; enthalpy and specific heat; and Gibb’s free energy and chemical potential for biological and environmental systems. Applications to biochemical potentials, water potential, absorption, osmosis, radiation, membranes, surface tension, and fugacity. Thermodynamic cycles as they apply to living systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEN 260</td>
<td>Instrumentation I for Agricultural and Biological Systems Engineering</td>
<td>AGEN 260; AGEN/BSEN 212A or equivalent</td>
<td>SPRING</td>
<td>LEC</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Crosslisted with: AGEN 260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: MATH 221 or parallel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Developing concepts in instrumentation relevant to agricultural and biological systems. Fundamental concepts of charge, current, voltage, impedance, power, and circuit analysis within the context of biological engineering. Introduction to sensors and their applications. Data collection using modern acquisition hardware and software. Electrical safety and effects of electricity on the human body.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEN 303</td>
<td>Principles of Process Engineering</td>
<td>MATH 221 or parallel</td>
<td>SPRING</td>
<td>LEC</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Crosslisted with: AGEN 303</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: MATH 221 or parallel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: CHEM 310 or CIVE 310 or CHME 332 is recommended as prereq or parallel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEN 311</td>
<td>Biomedical Signal and System Analysis</td>
<td>MATH 221; and BSEN 212A or equivalent</td>
<td>SPRING</td>
<td>LEC</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Crosslisted with: AGEN 212A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: MATH 221 or parallel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSEN 324</td>
<td></td>
<td>AGEN 324, BSEN 324</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BSEN 317 Introduction to Biomedical Engineering
Prerequisites: PHYS 211; MATH 221 or parallel; and LIFE 120 or BIOS 101
Description: Research areas and applications related to biomedical engineering including bioelectricity, biosensors, biomechanics, cardiovascular mechanics, tissue engineering, biotechnology, and medical imaging. Identifying engineering methods used to develop biomedical technologies and communicating technical knowledge to a wide variety of audiences.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL

BSEN 324 Mechanics of Materials for Agricultural and Biological Systems Engineering
Crosslisted with: AGEN 324
Prerequisites: AGEN/BSEN 225, MECH 223
Description: Development of the concepts of stress and strain relevant to agricultural and biological systems. Stress analysis of axial, torsional, and bending stresses, combined loading analysis, deflection evaluation, static and dynamic failure theory. Practical applications in agricultural and biological systems will be discussed.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: AGEN 443

BSEN 325 Power Systems Design
Crosslisted with: AGEN 325
Prerequisites: PHYS 212 or ECEN 211, and MECH/CIVE 310 or CHME 332 or parallel.
Description: Fundamentals of Power systems for machines. Introduction to fluid power (hydraulics, pneumatics), pumps, motors, cylinders, control devices and system design. Selection of electric motors as power sources, operating characteristics and circuits. Selection of internal combustion engines as power sources.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

BSEN 326 Introduction to Environmental Engineering
Crosslisted with: CIVE 326
Prerequisites: CHEM 109 or 110 or 111 or 113, and MATH 221.
Description: Introduction to principles of environmental engineering including water quality, atmospheric quality, pollution prevention, and solid and hazardous wastes engineering. Design of water, air, and waste management systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: BSEN 327, CIVE 327; BSEN 425, CIVE 425

BSEN 326H Honors: Introduction to Environmental Engineering
Crosslisted with: CIVE 326H
Prerequisites: Good standing in the University Honors Program or by invitation: CHEM 109 or 110 or 111 or 113, MATH 221
Description: Introduction to principles of environmental engineering including water quality, atmospheric quality, pollution prevention, and solid and hazardous wastes engineering. Design of water, air, and waste management systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: BSEN 327, CIVE 327

BSEN 327 Environmental Engineering Laboratory
Crosslisted with: CIVE 327
Prerequisites: CIVE/BSEN 326 or parallel
Description: Environmental engineering experiments, demonstrations, field trips, and projects. Experiments include the measurement and determination of environmental quality parameters such as solids, dissolved oxygen, biochemical and chemical oxygen demand, and alkalinity.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LAB

BSEN 344 Biological and Environmental Transport Processes
Crosslisted with: AGEN 344
Prerequisites: BSEN 244 or MECH 200; MATH 221; MECH/CIVE 310 or CHME 332 or parallel
Description: Introduction to concurrent transport of energy and mass in biological and environmental processes. Modes of heat transfer, steady and non-steady state heat conduction, convective heat transfer, radiative heat transfer, and heat transfer with phase change. Equilibrium, kinetics, and modes of mass transfer, diffusion, dispersion, and convective mass transfer. Soil freezing and thawing, energy and mass balances of crops, diffusivities of membranes, photosynthesis, human and animal energy balances, and respiration.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

BSEN 350 Soil and Water Resources Engineering
Crosslisted with: AGEN 350
Prerequisites: MATH 221; and parallel: MECH 310 or CIVE 310 or CHME 332
Description: Introduction to soil and water resources and the engineering processes used to analyze watersheds. Soil water relations, evapotranspiration, precipitation, runoff, erosion, flow in natural waterways and through reservoirs, wetland and groundwater hydrology, and water quality. Geographic information system utilized to develop maps and analyze watershed characteristics. A selected watershed is investigated.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL
BSEN 355 Introduction to Ecological Engineering

Prerequisites: CHEM 110 or CHEM 111 or CHEM 114; and MATH 104 or MATH 106.

Notes: Recommended: AGEN/BSEN 350 or CIVE 352 or CIVE 353 or MSYM/WATS 354; and BIOS 101 or LIFE 121 or NRES 220.

Description: Introduction to principles of ecological engineering including ecosystems ecology, river restoration, constructed wetlands, green infrastructure stormwater management, and environmental restoration. Ecological design of water and land protection practices. Includes introduction to water pollution and contaminant fate and remediation.

Credit Hours: 3

Max credits per semester: 3

Max credits per degree: 3

Format: LEC

BSEN 395 Internship in Agricultural and Biological Systems Engineering

Crosslisted with: AGEN 395

Prerequisites: Permission

Description: Practical experience, directed learning, and career exploration and development in a selected business, industry, agency, or educational institution. Activities must include a significant engineering component.

Credit Hours: 1-3

Min credits per semester: 1

Max credits per semester: 3

Max credits per degree: 3

Format: FLD

BSEN 412 Rehabilitation Engineering

Crosslisted with: BSEN 812

Prerequisites: BSEN 311 or ECEN 304

Description: Application of engineering methods to the development of assistive technology for people with injuries and disabilities. Characterization of the physical and mental capabilities of people with impairment, universal design, assistive technologies associated with seating, transportation, communication, and recreation. Integration of engineering design principles in a rehabilitation design project.

Credit Hours: 3

Max credits per semester: 3

Max credits per degree: 3

Format: LEC

BSEN 414 Medical Imaging Systems

Crosslisted with: BSEN 814

Prerequisites: BSEN 311 or ECEN 304

Description: Underlying physics, instrumentation, and signal analysis of biomedical and biological imaging modalities. MRI, X-ray, CT, ultrasound, nuclear medicine, and the human visual system. Energy-tissue interactions. Resolution, point spread function, contrast, diffraction, comparisons. Information content in images for biological systems.

Credit Hours: 3

Max credits per semester: 3

Max credits per degree: 3

Format: LEC

BSEN 416 Introduction to Biomaterials

Crosslisted with: BSEN 816

Prerequisites: BSEN/AGEN 225 or MECH 325; BIOC 401 or BIOC 431

Notes: Requires the evaluation of current primary literature in the field.

Description: Introduction to all types of bio-materials, metals, ceramics, polymers, and natural materials. Characterization of biomaterials, mechanical and physical properties, cell-biomaterials interactions, degradation, and host reaction to biomaterials. FDA testing and applications of biomaterials, implants, tissue engineering scaffolds, artificial organs, drug delivery, and adhesives.

Credit Hours: 3

Max credits per semester: 3

Max credits per degree: 3

Format: LEC

Prerequisite for: BSEN 418, BSEN 818

BSEN 418 Tissue Engineering

Crosslisted with: BSEN 818

Prerequisites: BSEN 416/816 or equivalent

Notes: Uses case studies to demonstrate clinical implementation of engineered tissues.

Description: Introduction to engineering biological substitutes that can restore, maintain or improve organ function in therapy of diseases. Engineering methods and principles to design tissues and organs, cell and tissue biology, tissue growth and development, biomaterial scaffolds, growth factor and drug delivery, scaffold-cell interactions, and bioreactors.

Credit Hours: 3

Max credits per semester: 3

Max credits per degree: 3

Format: LEC

BSEN 422 Pollution Prevention: Principles and Practices

Crosslisted with: BSEN 822, CIVE 422, CIVE 822

Prerequisites: Permission.

Description: Introduction to pollution prevention (P2) and waste minimization methods. Practical applications to small businesses and industries. Legislative and historical development of P2 systems analysis, waste estimation, P2 methods, P2 economics, and sources of P2 information.

Credit Hours: 3

Max credits per semester: 3

Max credits per degree: 3

Format: LEC

Prerequisite for: AGEN 954

BSEN 425 Process Design in Water Supply and Wastewater Treatment

Crosslisted with: CIVE 425

Prerequisites: CIVE/BSEN 326 and CIVE/MECH 310

Description: Design of unit operations and processes associated with drinking water and wastewater treatment facilities.

Credit Hours: 3

Max credits per semester: 3

Max credits per degree: 3

Format: LEC
BSEN 441 Animal Waste Management
Crosslisted with: AGEN 441, AGEN 841, BSEN 841
Prerequisites: Senior standing.
Description: Characterization of wastes from animal production. Specification and design of collection, transport, storage, treatment, and land application systems. Air and water pollution, regulatory and management aspects.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

BSEN 444 Biomass and Bioenergy Engineering
Crosslisted with: BSEN 844
Prerequisites: Senior/graduate standing in engineering; BIOC 401 or 431
Description: Engineering processes for biomass conversion and bioenergy production. Topics include biomass chemistry, conversion reactions, current and emerging bioenergy technologies, feedstock logistics, life cycle assessment. Analysis of primary research literature required for graduate credit.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

BSEN 445 Bioprocess Engineering
Crosslisted with: BSEN 845
Prerequisites: BIOC 401 or BIOC 431; BSEN 303, BSEN 344
Description: Engineering topics related to processing of biological materials into valuable products. Enzyme kinetics, microbial kinetics, application of enzymes in industrial processes, bioreactor design, equipment scale-up, gas transfer in reactors and bioseparations.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL

BSEN 446 Unit Operations of Biological Processing
Crosslisted with: BSEN 846, AGEN 446, AGEN 846
Prerequisites: AGEN/BSEN 225; and AGEN/BSEN 344
Description: Application of heat, mass, and moment transport in analysis and design of unit operations for biological and agricultural materials. Evaporation, drying, distillation, extraction, leaching, thermal processing, membrane separation, centrifugation, and filtration.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: SPRING
Prerequisite for: BSEN 935

BSEN 453 Irrigation and Drainage Systems Engineering
Crosslisted with: AGEN 453, AGEN 853, BSEN 853
Prerequisites: CIVE 310 or MECH 310; AGEN 344 or BSEN 344.
Description: Analytical and design consideration of evapotranspiration, soil moisture, and water movement as related to irrigation and drainage systems; analysis and design of components of irrigation and drainage systems including water supplies, pumping plants, sprinkler systems, and center pivots.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: AGEN 854, MSYM 854; AGEN 953

BSEN 455 Nonpoint Source Pollution Control Engineering
Crosslisted with: BSEN 855, CIVE 455, CIVE 855
Prerequisites: BSEN 326/CIVE 326 or BSEN 355; AGEN/BSEN 350 or CIVE 352 as prerequisite or parallel.
Description: Identification, characterization, and assessment of nonpoint source pollutants; transport mechanisms and remediation technologies; design methodologies and case studies.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL

BSEN 458 Groundwater Engineering
Crosslisted with: BSEN 858, CIVE 458, CIVE 858
Prerequisites: CIVE 352 or AGEN 350 or BSEN 350.
Description: Application of engineering principles to the movement of groundwater. Analysis and design of wells, well fields, and artificial recharge. Analysis of pollutant movement...
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: AGEN 955, AGRO 955, CIVE 955, GEOL 985

BSEN 460 Instrumentation and Controls
Crosslisted with: AGEN 460, AGEN 860, BSEN 860
Prerequisites: ELEC 211 or ELEC 215
Description: Analysis and design of instrumentation and controls for agricultural and biological production, management and processing. Theory of basic sensors and transducers, analog and digital electrical control circuits, and the interfacing of computers with instruments and controls. Emphasis on signal analysis and interpretation for improving system performance.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
BSEN 468 Wetlands
Crosslisted with: BIOD 458, NRES 468, NRES 868, WATS 468, BSEN 868
Prerequisites: CHEM 109 and CHEM 110, or CHEM 105 and CHEM 106; Junior or Senior Standing.
Notes: Offered even-numbered calendar years.
Description: Physical, chemical and biological processes that occur in wetlands; the hydrology and soils of wetland systems; organisms occurring in wetlands and their ecology wetland creation, delineation, management and ecotoxicology.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

BSEN 470 Design I in Agricultural and Biological Systems Engineering
Crosslisted with: AGEN 470
Prerequisites: Professional admission into AGEN or BSEN; and permission.
Description: Definition, scope, analysis, and synthesis of a comprehensive design problem within the areas of emphasis in the Department of Biological Systems Engineering. Identification of a client's engineering problem to solve, and development of objectives and anticipated results.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC

BSEN 479 Hydroclimatology
Crosslisted with: NRES 479, METR 479, WATS 479, NRES 879, METR 879, BSEN 879
Prerequisites: NRES 208 or METR 100 or METR/NRES 370.
Notes: Offered spring semester of even-numbered calendar years.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

BSEN 480 Design II in Agricultural and Biological Systems Engineering
Crosslisted with: AGEN 480
Prerequisites: BSEN/AGEN 470
Description: Definition, scope, analysis, and synthesis of a comprehensive engineering problem in an engineering area of emphasis within the Department of Biological Systems Engineering. Design activity using the team approach to develop a solution.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LAB
ACE: ACE 10 Integrated Product

BSEN 492 Special Topics
Crosslisted with: BSEN 892
Prerequisites: Permission
Description: Subject matter in emerging areas of Biological Systems Engineering not covered in other courses within the curriculum. Topics, activities, and delivery methods vary.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Format: LEC

BSEN 496 Independent Study
Crosslisted with: AGEN 496
Prerequisites: Permission
Notes: Topics vary.
Description: Investigation and written report on engineering problems not covered in sufficient depth through existing courses.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Format: IND

BSEN 499H Honors Thesis
Crosslisted with: AGEN 499H
Prerequisites: Senior or junior standing, admission to the University Honors Program.
Description: Independent project which meets the requirements of the University Honors Program, conducted under the guidance of a faculty member in the Department of Biological Systems Engineering. The project should contribute to the advancement of knowledge in the field. Written thesis and formal presentation required.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Format: IND

PLEASE NOTE
This document represents a sample 4-year plan for degree completion with this major. Actual course selection and sequence may vary and should be discussed individually with your college or department academic advisor. Advisors also can help you plan other experiences to enrich your undergraduate education such as internships, education abroad, undergraduate research, learning communities, and service learning and community-based learning.

Career Information
The following represents a sample of the internships, jobs and graduate school programs that current students and recent graduates have reported.

Jobs of Recent Graduates
- Project Manager/Implementation Consultant, Epic - Madison WI
- Design Engineer, ScanMed - Omaha NE
- Process Engineer, Novozymes, Inc. - Blair NE
- Environmental Sales Associate, LI-COR Biosciences - Lincoln NE
- Research Associate, Mayo Clinic - Rochester MN
- Environmental Engineering Volunteer, Peace Corps - Panama City, Panama
- Project Engineer, Becton Dickinson - Columbus NE
Internships

- Water Resource Engineer, HDR - Denver CO
- Production Management Engineer, Cargill - Raleigh NC
- Applications Engineer, National Instruments - Austin TX
- Environmental Engineer, Koch Industries - Enid OK
- Project Engineer Specialist, Streck - Omaha NE
- Environmental Engineer, United States Air Force - Lincoln NE
- Environmental Engineer, Flint Hills Resources - Wichita KS
- Water Resources Engineer, Barr Engineering - Minneapolis MN
- Environmental Engineer 1, Tetra Tech - Kansas City MO
- Maintenance and Reliability Engineer, Zoetis - Lincoln NE
- Technician II, EA Engineering Science and Technology - Lincoln NE
- Project Management Engineer, Cargill - Blair NE
- Production Engineer, Archer Daniels Midland - Des Moines IA
- Biological Engineer, MatMaCorp - Lincoln NE
- Civil Analyst, Kimley Horn and Associates - McKinney TX
- Research Assistant, Madonna Movement and Neurosciences Institute - Lincoln NE
- Environmental Engineer, FYRA Engineering - La Vista NE
- Associate Engineer, Olsson Associates - Lincoln NE

Graduate & Professional Schools

- Biomedical Engineering, Ph.D., Virginia Tech - Blacksburg VA
- Medical Center - Lincoln NE
- Biomedical Research Training Program, University of Nebraska - Lincoln NE
- Civil Engineering, M.S., University of Nebraska-Lincoln - Lincoln NE
- Atmosphere and Energy, M.S., Stanford University - Stanford CA
- Accelerated Bachelors of Nursing, Creighton University - Omaha NE
- Environmental Engineer, United States Air Force - Lincoln NE
- Microbiology Intern, Becton Dickinson - Broken Bow NE
- Environmental Science Intern, HDR - Omaha NE
- Hydrologic Student Intern, United States Geological Survey - Lincoln NE
- Environmental Intern, Kiewit - Omaha NE
- Intern, Wake Forest Institute for Regenerative Medicine - Winston-Salem NC
- Summer Scholar, Children's Mercy Hospital - Kansas City MO
- Environmental, Health & Safety Intern, Growmark - Council Bluffs IA
- Microbiology Intern, Becton Dickinson - Broken Bow NE
- Ecology Intern, Auckland University of Technology - Auckland New Zealand
- Summer Apprenticeship Program, Biomedical Research Institute - Houston TX
- Operations Intern, Smithfield Farmland - Crete NE
- Engineering Intern, U.S. Army Corps of Engineers - Omaha NE
- Commercial Product Training Specialist Intern, Case New Holland Industrial - Racine WI
- Biological Student Aide, USDA-ARS - Lincoln NE
- R&D Intern, Medtronic - Sunnyvale CA
- Undergrad Research - Pediatric Surgical Clinical Research, University of Nebraska Medical Center and Methodist Children's Hospital - Omaha NE
- Water Resources Intern, JEO Consulting - Lincoln NE
- Research Experience for Undergraduates, Rice University - Houston TX

- Doctor of Medicine, University of Nebraska Medical Center - Omaha NE
- Prosthetics and Orthotics, M.S., University of Texas Southwestern Medical Center - Dallas TX
- Medical Scientist Training Program/M.D. and Ph.D., University of Wisconsin-Madison - Madison WI
- Biological Systems Engineering, Ph.D., University of Nebraska-Lincoln - Lincoln NE
- Bioengineering, Ph.D. and Medical Science Training Program, Rice University - Houston TX
- Doctor of Dental Surgery, University of Nebraska Medical Center - Lincoln NE
- Juris Doctor, George Washington University Law School - Washington DC
- Bioengineering, Ph.D., University of California-Berkeley - Berkeley CA
- Doctor of Veterinary Medicine, Iowa State University - Ames IA
- Biomedical Engineering, Ph.D., University of Minnesota - Minneapolis MN
- Food Engineering, M.S., Michigan State University - East Lansing MI
- Doctorate of Chiropractic, Palmer College of Chiropractic - Davenport IA
- Environmental Engineering, M.S., University of Nebraska-Lincoln - Lincoln NE
- Medical Scientist Training Program, Emory University/Georgia Institute of Technology - Atlanta GA
- Plant Biological Sciences, Ph.D., University of Minnesota-Twin Cities - Minneapolis MN
- Doctor of Pharmacy, University of Nebraska Medical Center - Omaha NE
- Biomedical Sciences Research Program, Ph.D., Kansas City University of Medicine and Biosciences - Kansas City MO
- Juris Doctorate, University of Kansas - Lawrence KS
- Biological Systems Engineering, Ph.D., Johns Hopkins University - Baltimore MD
- Accelerated Bachelors of Nursing, Creighton University - Omaha NE
- Atmosphere and Energy, M.S., Stanford University - Stanford CA
- Civil Engineering, M.S., University of Nebraska-Lincoln - Lincoln NE
- Bioengineering, Ph.D., University of Washington - Seattle WA
- Biomedical Research Training Program, University of Nebraska Medical Center - Lincoln NE
- Engineering Education, Ph.D., Virginia Tech - Blacksburg VA