WATER SCIENCE (WATS)

WATS 281 Introduction to Water Science
Crosslisted with: GEOG 281, GEOG 281H, NRES 281, NRES 281H, WATS 281H
Description: Survey of the water science from the perspective of both natural and social sciences. Water budget, precipitation, evapotranspiration, runoff and stream flow, groundwater, water quality parameters, economics of water, water policy, water law and water politics.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: AGRO 361, GEOL 361, NRES 361, SOIL 361, AGRO 361H, GEOL 361H, SOIL 361H, WATS 361H, NRES 319
Groups: Physical Geography

WATS 281H Introduction to Water Science
Crosslisted with: GEOG 281H, NRES 281H, WATS 281
Description: Survey of the water science from the perspective of both natural and social sciences. Water budget, precipitation, evapotranspiration, runoff and stream flow, groundwater, water quality parameters, economics of water, water policy, water law and water politics.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: AGRO 361, GEOL 361, NRES 361, SOIL 361, AGRO 361H, GEOL 361H, SOIL 361H, WATS 361H, NRES 319
Groups: Physical Geography

WATS 299 Career Experiences
Description: Student participation in water science applications. May include participation in water resource management, water measurement, water quality monitoring, water supply, water administration; research in laboratories, green houses and fields; or preparation of educational materials.
Credit Hours: 1-5
Min credits per semester: 1
Max credits per semester: 5
Max credits per degree: 12
Format: IND

WATS 354 Soil Conservation and Watershed Management
Crosslisted with: MSYM 354, SOIL 354
Prerequisites: AGRO/AGRO 153; and MSYM 109 or PHYS 141 or PHYS 151 or PHYS 211
Description: Watershed hydrology, soil erosion, erosion control, water management, and land surveying and mapping. Includes rainfall-runoff relationships; determination of watershed characteristics; terraces, waterways, vegetative filters, and residue management; ponds, wetlands, non-point source pollution control, and water conservation; profile and topographic surveying.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL

WATS 361 Soils, Environment and Water Quality
Crosslisted with: AGRO 361, GEOL 361, NRES 361, SOIL 361, AGRO 361H, GEOL 361H, SOIL 361H, WATS 361H
Prerequisites: AGRO/HORT/SOIL 153; MATH 102 or 103; two semesters chemistry (CHEM 105, 106 or CHEM 109,110) and WATS/GEOG/NRES 281
Description: Chemical and physical processes that influence the fate and transport of contaminants (inorganic, microbial) in soil-water environments. Extent, fate, mitigation, and impact of various sources of pollution. Remedial technologies used for environmental restoration of contaminated environments.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

WATS 408 Microclimate: The Biological Environment
Crosslisted with: AGRO 408, GEOG 408, HORT 408, METR 408, NRES 408
Prerequisites: Junior standing, MATH 106 or equivalent, 5 hrs physics, major in any of the physical or biological sciences or engineering; or permission.
Description: Physical factors that create the biological environment. Radiation and energy balances of earth's surfaces, terrestrial and marine. Temperature, humidity, and wind regimes near the surface. Control of the physical environment through irrigation, windbreaks, frost protection, manipulation of light, and radiation. Applications to air pollution research. Instruments for measuring environmental conditions and remote sensing of the environment.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

WATS 418 Chemistry of Natural Waters
Crosslisted with: GEOL 418, GEOL 818, NRES 419, NRES 819
Description: Principles of water chemistry and their use in precipitation, surface water, and groundwater studies. Groundwater applications used to determine the time and source of groundwater recharge, estimate groundwater residence time, identify aquifer mineralogy, examine the degree of mixing between waters of various sources and evaluate what types of biological and chemical processes have occurred during the water's journey through the aquifer system.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
WATS 418L Chemistry of Natural Waters Laboratory
Crosslisted with: GEOL 418L, GEOL 818L, NRES 419L, NRES 819L
Description: Basic laboratory techniques used to perform water analysis including various wet chemical techniques, instrument use (AA, IC, UV-Visible) and computer modeling. Techniques for sample collection and preservation, parameter estimation and chemical analysis.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LAB

WATS 452 Irrigation Systems Management
Crosslisted with: MSYM 452, MSYM 852, AGRO 452
Prerequisites: MSYM 109 or PHYS 141 or PHYS 151 or PHYS 211
Notes: AGRO/SOIL 153 recommended.
Description: Irrigation management and the selection, evaluation, and improvement of irrigation systems. Includes soil-water measurement, crop water use, irrigation scheduling, irrigation efficiency, measurement of water flow, irrigation systems, groundwater and wells, pumping systems, applying chemicals with irrigation systems, and environmental and water resource considerations.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

WATS 457 Water Law
Crosslisted with: AECN 457, AECN 857, NREE 457
Prerequisites: AECN/NREE 357.
Description: Environmental impact review; public trust doctrine; endangered species; land use controls; wetlands regulation; surface and ground water rights; Indian and federal water rights; impact of water quality regulations on water allocation.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

WATS 459 Limnology
Crosslisted with: BIOS 459, BIOS 859, NRES 459, NRES 859
Description: Physical, chemical, and biological processes that occur in fresh water. Organisms occurring in fresh water and their ecology; biological productivity of water and its causative factors; eutrophication and its effects.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC

WATS 461 Soil Physics
Crosslisted with: AGRO 461, GEOL 461, NRES 461, SOIL 461
Prerequisites: AGRO/SOIL 153, PHYS 141 or equivalent, one semester of calculus.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

WATS 465 Resource and Environmental Economics II
Crosslisted with: AECN 465, AECN 465H, AECN 865, NREE 465, NREE 465H, WATS 465H
Prerequisites: MATH 104 and one course in statistics.
Description: Application of resource economics concepts and empirical tools to resource management problems. Public policy issues involving environmental quality, land and water management.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

WATS 465H Resource and Environmental Economics II
Crosslisted with: AECN 465, AECN 465H, AECN 865, NREE 465, NREE 465H, WATS 465
Prerequisites: MATH 104 and one course in statistics.
Description: Application of resource economics concepts and empirical tools to resource management problems. Public policy issues involving environmental quality, land and water management.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

WATS 468 Wetlands
Crosslisted with: BIOS 458, NRES 468, NRES 868
Description: Physical, chemical and biological processes that occur in wetlands; the hydrology and soils of wetland systems; organisms occurring in wetlands and their ecology wetland creation, delineation, management and ecotoxicology.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC

WATS 472 Applied Soil Physics
Crosslisted with: AGRO 472, AGRO 872, NRES 472, NRES 872, SOIL 472
Prerequisites: AGRO/HORT/SOIL 153 or equivalent; MATH 104 or MATH 106 or equivalent.
Description: Emphasis on applied soil physics. Discussion of theoretical principles followed by field and laboratory exercises and applications. Fluxes of water, solutes, air, and heat through the soil. Emphasis on water infiltration, water retention, other soil hydraulic properties. Components of soil water balance. Management of soil water.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
WATS 475 Water Quality Strategy
Crosslisted with: NRES 475, NRES 875, SOCI 475, SOCI 875, SOIL 475, AGRO 475, AGRO 875, CIVE 475, CIVE 875, CRPL 475, CRPL 875, GEOL 475, GEOL 875, MSYM 475, MSYM 875, POLS 475, POLS 875
Prerequisites: Senior standing or permission
Description: Holistic approach to the selection and analysis of planning strategies for protecting water quality from non-point sources of contamination. Introduction to the use of methods of analyzing the impact of strategies on whole systems and subsystems; for selecting strategies; and for evaluating present strategies. Capstone course.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
ACE: ACE 10 Integrated Product
Groups: American Government&Public Pol

WATS 479 Hydroclimatology
Crosslisted with: NRES 479, METR 479, BSEN 479
Prerequisites: NRES 208 or METR 200 or METR/NRES 370
Description: Interaction between earth's climate and the hydrologic cycle. Energy and water fluxes at the land-atmosphere interface. Atmospheric moisture transport, precipitation, evaporation, snow-melt, and runoff. Impacts of climate variability and change on the hydrologic cycle. Offered spring semester of even-numbered calendar years.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

WATS 481 Stream and River Ecology
Crosslisted with: WATS 881, BIOS 481, NRES 481
Prerequisites: NRES 222 or equivalent
Description: Fundamental physical drivers operating in stream and river ecosystems and how those vary in space and time. Major classes of organisms associated with stream ecosystems and their functional roles. Fundamental controls on biotic diversity in stream and river ecosystems and its variance. Major aspects of stream ecosystem function including energy flow and nutrient cycling. Ecosystem services provided by stream and river ecosystems and causes and consequences of human impacts on streams and rivers. Underlying principles of bioassessment and current methods of stream restoration.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC

WATS 484 Water Resources Seminar
Crosslisted with: AGRO 484, GECG 484, GEOL 484, NRES 484, NRES 884, AGRO 884, GECG 884, GEOL 884, WATS 884
Prerequisites: Junior or above standing, or permission
Description: Seminar on current water resources research and issues in Nebraska and the region.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC

WATS 496 Principles and Problems in Water Science
Description: Individual or group projects in research, literature review, or extension of course work under the supervision and evaluation of a water science faculty member.
Credit Hours: 1-5
Min credits per semester: 1
Max credits per semester: 5
Max credits per degree: 12
Format: IND

WATS 498A Senior Project I
Prerequisites: Senior standing
Description: Work as individual or as a team member to develop solutions to water resource problems. Problem involves multi-disciplinary features. Requires independent research, proposal preparation and presentation. WATS 498A is the first course of a two-semester sequence of courses consisting of WATS 498A and WATS 498B.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: IND
Prerequisite for: WATS 498B
ACE: ACE 10 Integrated Product

WATS 498B Senior Project II
Prerequisites: WATS 498A
Description: Continuation of WATS 498A. Carry out proposal and present findings orally and in writing. WATS 498B is the second course of a two-semester sequence of courses consisting of WATS 498A and WATS 498B.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: IND
ACE: ACE 10 Integrated Product

WATS 499H Honors Thesis
Prerequisites: Admission to the University Honors Program and permission, AGRI 299H recommended.
Description: Conduct a scholarly research project and write a University Honors Program or undergraduate thesis.
Credit Hours: 3-6
Min credits per semester: 3
Max credits per semester: 6
Max credits per degree: 6
Format: IND
ACE: ACE 10 Integrated Product