MECHANIZED SYSTEMS MANAGEMENT (MSYM)

MSYM 109 Physical Principles in Agriculture and Life Sciences
Prerequisites: MATH 101 or 102 or 103 or 104 or 106; or placement in MATH 102 or 104 or 106.
Notes: Students cannot receive credit for both MSYM 109 and PHYS 141 or 151.
Description: Fundamental principles of mechanics, heat, electricity, magnetism and electromagnetism and their relationship to energy utilization and conservation. Principles then applied to problem situations in agriculture and life sciences.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Prerequisite for: FDST 363; MSYM 363; MSYM 109L; MSYM 232; MSYM 245; MSYM 262; MSYM 342; MSYM 354, SOIL 354, WATS 354; MSYM 364; MSYM 452, MSYM 852, WATS 452, AGRO 452
ACE: ACE 4 Science

MSYM 109L Physical Principles in Agriculture and Life Sciences Laboratory
Prerequisites: MSYM 109 or parallel, or PHYS 151
Description: Laboratory experiments on mechanics, heat, electricity, magnetism and electromagnetism and their relationship to energy utilization and conservation in agriculture and life sciences.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option

MSYM 162 Introduction to Mechanized Systems Management
Description: Basic principles of describing and evaluating mechanized systems relevant to agriculture, food, energy, and water. Problem solving using systems-thinking. Exploration of major and career opportunities. Academic success and planning.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option

MSYM 232 Power and Machinery Principles
Prerequisites: MSYM 109, or PHYS 141, or PHYS 151, or PHYS 211, or parallel PHYS 211
Description: Operational characteristics of IC engines, field, materials-handling, and processing machines and their components. Includes analyses, estimations, and objective comparisons of performance; principles for adjustment and calibration of metering systems; and cost-effective sizing of machines. Exercises include using ASABE Standards and available reports of machine performance (tractor test reports, etc.).
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL

MSYM 245 Electrical Service Systems
Prerequisites: MSYM 109 or high school physics.
Description: Utilization of electric energy in agricultural production, processing, and residential applications. Wiring installations; selection of safe and adequate circuit devices; service equipment and conduits; and electric motors and their control; and energy management.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: MSYM 412; MSYM 416

MSYM 262 Problem Solving in Mechanized Systems Management
Prerequisites: MSYM 109 or PHYS 141 or PHYS 151 or PHYS 211.
Notes: Open to MSYM majors only.
Description: Use of computational tools to solve problems relevant to mechanized systems management. Professional communication of technical information. Discussion of current and emerging issues relevant to the major.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option
Offered: SPRING

MSYM 299 Career Experiences
Prerequisites: MSYM 109 or parallel, or PHYS 151
Description: Student participation in physical systems applications. May include participation in mechanization-related areas of agribusiness, production practices, and processing operations; research in laboratory, greenhouse and field; or preparation of teaching materials.
Credit Hours: 1-5
Min credits per semester: 1
Max credits per semester: 5
Max credits per degree: 12
Grading Option: Pass No Pass

MSYM 342 Animal Housing Systems
Prerequisites: MSYM 109 or PHYS 141 or PHYS 151 or PHYS 211
Description: Production facilities for livestock and poultry will be developed with emphasis on building and feedlot layout, ventilation, heating and cooling systems; energy utilization; and construction materials and methods.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL

MSYM 354 Soil Conservation and Watershed Management
Crosslisted with: SOIL 354, WATS 354
Prerequisites: AGRO/SOIL 153; and MSYM 109 or PHYS 141 or PHYS 151 or PHYS 211
Description: Watershed hydrology, soil erosion, erosion control, water management, and land surveying and mapping. Includes rainfall-runoff relationships; determination of watershed characteristics; terraces, waterways, vegetative filters, and residue management; ponds, wetlands, non-point source pollution control, and water conservation; profile and topographic surveying.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL
Mechanized Systems Management (MSYM)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Prerequisites</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSYM 363</td>
<td>Heat and Mass Transfer</td>
<td></td>
<td>Fundamentals of food engineering including material and energy balances, fluid mechanics, heat transfer and mass transfer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crosslisted with: FDST 363</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: MATH 104 or 106; MSYM 109 or PHYS 141 or 151.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per semester: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grading Option: Graded with Option</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSYM 364</td>
<td>Agricultural Products Processing and Handling</td>
<td>MSYM 109 or PHYS 141 or PHYS 151 or PHYS 211</td>
<td>Analysis of processing and handling operations. Chemical and physical characteristics of agricultural products. Application of psychrometrics. Power requirements, capacities, and efficiencies of drying and conveying systems. Discussion of safety issues, logistics, and survey of industry technologies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per semester: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grading Option: Graded with Option</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSYM 395</td>
<td>Internship in Mechanized Systems Management</td>
<td>Junior standing</td>
<td>Completion of internship approval form is required. The internship proposal is subject to approval by the Department of Biological Systems Engineering. Pass/No Pass only.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 1-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min credits per semester: 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per semester: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grading Option: Pass No Pass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSYM 400A</td>
<td>Occupational Safety</td>
<td>Junior standing</td>
<td>Contact CASNR Distance Education Consortium Coordinator for course details, prerequisites and registration information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per semester: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grading Option: Graded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSYM 400B</td>
<td>Agricultural Safety and Health</td>
<td></td>
<td>Safety concepts, principles, practices, rules and regulations as they relate to agriculture will be explored. Developing and conducting safety programs, and conducting safety inspections and accident investigations are other aspects of the course.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per semester: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grading Option: Graded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSYM 400E</td>
<td>Biorenewable Systems Technology</td>
<td></td>
<td>The science, engineering, economics and business of converting biorenewable resources into bioenergy and biobased products. Biorenewable concepts as they relate to drivers of change, feedstock production, economics, transportation and logistics, and marketing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per semester: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grading Option: Graded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSYM 400F</td>
<td>Machinery Management Using Precision Agriculture</td>
<td></td>
<td>Management of agricultural equipment that is commonly used in conjunction with GPS technology such as planters, combines, fertilizer application equipment, and sprayer application equipment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per semester: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grading Option: Graded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSYM 400K</td>
<td>Chemical Application Systems</td>
<td></td>
<td>Liquid and granular application systems and respective components will be studied along with procedures for equipment sizing and maintenance, minimizing drift, system calibration, and safe handling-transportation-storage-disposal and spill clean-up of agrichemicals.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per semester: 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grading Option: Graded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSYM 412</td>
<td>Hydraulic Power Systems</td>
<td>MSYM 245</td>
<td>Theory and application of fluids under controlled pressure to perform work in mobile and industrial applications. Positive displacement (PD) pumps, linear and rotary hydraulic actuators (hydraulic cylinders and motors), valves, and electric over hydraulic systems will be studied in detail. Fluid power circuit development on both hydraulic benches and computer simulated environments will be performed with emphasis on circuit analysis, and system troubleshooting.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per semester: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grading Option: Graded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSYM 412</td>
<td>Manipulation Systems</td>
<td></td>
<td>Contact CASNR Distance Education Consortium Coordinator for course details, prerequisites and registration information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per semester: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grading Option: Graded</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact CASNR Distance Education Consortium Coordinator for course details, prerequisites and registration information.
MSYM 416 Sensors and Control Systems for Agri-Industries
Prerequisites: MSYM 245 or permission.
Description: Application of sensors for measurement of process control variables and implementation of microcomputer-based measurement and control systems. Basic electrical and electronic instrumentation plus control of electrically, pneumatically and/or hydraulically powered systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

MSYM 431 Site-specific Crop Management
Crosslisted with: AGEN 431, AGRO 431
Prerequisites: Senior standing; AGRO/SOIL 153; AGRO 204.
Description: Principles and concepts of site-specific management. Evaluation of geographic information systems for crop production practices. Practical experience with hardware and software necessary for successful application of information affecting crop management.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

MSYM 433 Equipment and Tractor Testing
Crosslisted with: MSYM 833
Prerequisites: MSYM 232; and STAT 218 or STAT 380 or MECH 321
Notes: Offered spring semester in even-numbered calendar years.
Description: Principles and procedures involved in testing agricultural equipment and tractors. Actual test planned, scheduled, conducted and reported. Test may be based upon procedures used at the Nebraska Tractor Testing Laboratory or involve other equipment being used for research in the department.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING

MSYM 436 Embedded Controls for Agricultural Applications
Crosslisted with: AGEN 436, AGEN 836, MSYM 836
Prerequisites: AGEN/BSEN 260 or MSYM 416
Description: Introduction to the basics of embedded controller programming, and the development of Controller Area Network (CAN) bus systems in agricultural applications. Interfacing sensors with analog and digital signals, closed loop control of actuators, transmission and reception of CAN messages, programming of CAN messages in a distributed controller set up for sensor data acquisition, and actuator control will be studied.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Offered: FALL

MSYM 452 Irrigation Systems Management
Crosslisted with: MSYM 852, WATS 452, AGRO 452
Prerequisites: MSYM 109 or PHYS 141 or PHYS 151 or PHYS 211
Notes: AGRO/SOIL 153 recommended.
Description: Irrigation management and the selection, evaluation, and improvement of irrigation systems. Includes soil-water measurement, crop water use, irrigation scheduling, irrigation efficiency, measurement of water flow, irrigation systems, groundwater and wells, pumping systems, applying chemicals with irrigation systems, and environmental and water resource considerations.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL
Prerequisite for: AGEN 854, MSYM 854; AGEN 955, AGRO 955, CIVE 955, GEOL 985; MSYM 855

MSYM 462 Equipment Systems
Crosslisted with: MSYM 862
Prerequisites: Senior standing in MYSM
Notes: Capstone course.
Description: Team-based activities to evaluate equipment systems, make technical and economic recommendations, develop professional written and oral reports. Topics include equipment system performance and management, project scheduling and planning, cost estimation, reliability analysis, and risk assessment.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 10 Integrated Product

MSYM 465 Food Engineering Unit Operations
Crosslisted with: FDST 465, FDST 865, MSYM 865
Prerequisites: FDST/MSYM 363
Description: Unit operations and their applications to food processing.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

MSYM 469 Bio-Atmospheric Instrumentation
Crosslisted with: AGRO 469, GEOG 469, HORT 407, METR 469, NRES 469, AGRO 869, GEOG 869, HORT 807, METR 869, MSYM 869, NRES 869
Prerequisites: Junior standing; MATH 106; 4 hrs physics; physical or biological science major.
Description: Discussion and practical application of principles and practices of measuring meteorological and related variables near the earth's surface including temperature, humidity, precipitation, pressure, radiation and wind. Performance characteristics of sensors and modern data collection methods are discussed and evaluated.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Groups: Physical Geography
MSYM 475 Water Quality Strategy
Crosslisted with: NRES 475, NRES 875, SOCI 475, SOCI 875, SOIL 475, WATS 475, AGRO 475, AGRO 875, CIVE 475, CIVE 875, CRPL 475, CRPL 875, GEOL 475, GEOL 875, MSYM 875, POLS 475, POLS 875
Prerequisites: Senior standing.
Notes: Capstone course.
Description: Holistic approach to the selection and analysis of planning strategies for protecting water quality from nonpoint sources of contamination. Introduction to the use of methods of analyzing the impact of strategies on whole systems and subsystems; for selecting strategies; and for evaluating present strategies.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 10 Integrated Product
Groups: American Government&Public Pol

MSYM 492 Special Topics in Mechanized Systems Management
Crosslisted with: MSYM 892
Prerequisites: Permission
Description: Subject matter in emerging areas of Mechanized Systems Management not covered in other courses within the curriculum. Topics, activities, and delivery methods vary.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Grading Option: Graded with Option

MSYM 496 Principles and Problems in Mechanized Agriculture
Crosslisted with: MSYM 896
Prerequisites: 15 hours in MSYM or closely related area.
Description: Individual or group projects in research, literature review, or extension of course work under the supervision and evaluation of a departmental faculty member.
Credit Hours: 1-5
Min credits per semester: 1
Max credits per semester: 5
Max credits per degree: 12
Grading Option: Graded with Option

MSYM 499H Honors Thesis
Prerequisites: Admission to the University Honors Program and permission
Notes: AGRI 299H recommended.
Description: Conduct a scholarly research project and write a University Honors Program or undergraduate thesis.
Credit Hours: 3-6
Min credits per semester: 3
Max credits per semester: 6
Max credits per degree: 6
Grading Option: Graded