ENGINEERING (ENGR)

ENGR 10 Freshman Engineering Seminar
Description: Overview of the engineering field as well as major specific information. Information will be provided to help with transitional needs to UNL and the college of engineering (time management, study skills, and resources), involvement opportunities (student organizations, research, and study abroad), tours of engineering facilities for experiential learning, and interactive learning to increase business knowledge and skills. Open only to first year students considering or admitted to the College of Engineering.
Credit Hours: 0
Max credits per semester:
Max credits per degree:
Format: LEC

ENGR 20 Sophomore Engineering Seminar
Description: Overview of career opportunities in engineering and construction management. Emphasizes internships, cooperative education and career placement.
Credit Hours: 0
Max credits per semester:
Max credits per degree:
Format: LEC

ENGR 100 Interpersonal Skills for Engineering Leaders
Description: Establishes a foundation in communication and leadership skills that is needed for engineering students to be successful in their academic endeavors and future career opportunities. Introduction to the principles and practices of positive interpersonal relationships for leadership development. Self-awareness, awareness of others, effective interpersonal communication, and the building of trust relationships as a basis for understanding and developing leadership.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CSCE 488
ACE: ACE 2 Communication Competence

ENGR 101 Introduction to Engineering
Description: Students will examine relevant and practical industrial and commercial engineering applications to gain necessary engineering skills that will help them succeed as a student as well as a professional engineer. A variety of engineering disciplines will be highlighted and discussed, as well as topics in the underlying physical, chemical, and biological scientific principles and processes related to each topic. The class will use a specified focus area that involves real world applications to aid in the conceptualization and learning of the course material. Students will develop engineering problem solving skills; gain expertise and experience using modern engineering and computational tools; and emulate an engineering team atmosphere - each of which can be applied to a professional engineering environment.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

ENGR 191 Freshman Engineering Special Topics
Description: Topics vary.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

ENGR 200 Professionalism and Global Perspective
Description: Enhance essential professional skills for personal and team success through investigating issues in a global context. Explore in-demand professional aptitudes (self-awareness, emotional intelligence, teamwork, communication, and workplace interaction expectations).
Through industry/community interaction, explore cultural and business norms and the application of broader perspectives to identify issues/solutions responsive and adaptive to their global context
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: ENGR 320
ACE: ACE 9 Global/Diversity ACE 6 Social Science

ENGR 250 Engineering Cooperative Education
Prerequisites: Sophomore standing; permission of College of Engineering Dean's Office and department chair of student's engineering major.
Notes: Special approval is required to take course for credit.
Description: Cooperative education work in a regularly established cooperative education work-study program in any engineering curriculum.
Credit Hours: 12.00
Max credits per semester: 12
Max credits per degree: 12
Format: FLD

ENGR 291 Sophomore Engineering Special Topics
Description: Topics vary.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

ENGR 300 Principles of Nuclear Engineering
Description: Introduction to nuclear engineering principles.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC
Prerequisite for: MECH 421, MECH 821, ENGR 421

ENGR 301 Introduction to Nuclear and Radiation Engineering Concepts
Description: History of nuclear development, basic concepts of radiation and radioactivity, radioactive waste management, global warming and the impact of nuclear power plants. Industrial applications, health physics, and nuclear medicine. Job opportunities at power plants, graduate school, and national laboratories. Tour of the University of Texas nuclear research reactor and demonstration experiments.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC
Prerequisite for: ENGR 402; MECH 421, MECH 821, ENGR 421
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Prerequisites</th>
<th>Credit Hours</th>
<th>Max credits per semester</th>
<th>Max credits per degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 310</td>
<td>Utilization of Nuclear Technologies in Society</td>
<td>The applications of nuclear science to society and the fundamental radiation principles utilized in these applications.</td>
<td>ENGR 300 or ENGR 301 or ENGR 310; MATH 208/MATH 208H; and PHYS 212/PHYS 212H</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 320</td>
<td>Leadership, Management and Ethics</td>
<td>Explore professional leadership, ethics, project management tools and skills, and how to successfully implement and respond to change.</td>
<td>ENGR 200; MECH 421, MECH 821, ENGR 421</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 391</td>
<td>Junior Engineering Special Topics</td>
<td>Topics vary.</td>
<td></td>
<td>1-3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 400</td>
<td>Professional Ethics and Social Responsibilities</td>
<td>Professional relations, personal requirements, civic responsibilities, and ethical obligations for engineering practice. Legal registration of engineers and architects. Subprofessional and professional services. Changing conditions in engineering practice. Requirements for placement in engineering.</td>
<td>Must have senior standing and Professional Admission.</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 410</td>
<td>Radiation Protection and Shielding</td>
<td>Basic principles and concepts of radiation protection and shielding. Dose units and response functions, hazards of radiation doses, radiation sources, basic methods for dose evaluation, and shielding design techniques for photons and neutrons.</td>
<td>MECH401/801/ENGR 421.</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 411</td>
<td>Nuclear Reactor Theory</td>
<td>Introduction to neutron diffusion theory, neutron moderation, neutron thermalization, and criticality condition of nuclear reactor.</td>
<td>ENGR 310.</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 412</td>
<td>Nuclear Reactor Analysis</td>
<td>Group diffusion method, multiregional reactors, heterogeneous reactors, reactor kinetics, and change in reactivity.</td>
<td>ENGR 411</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 420</td>
<td>Nuclear Reactor Engineering</td>
<td>The physics governing nuclear reactors and the design principles for commercial nuclear power plants. Reactor designs currently operating in the power industry.</td>
<td>MECH 421/821/ENGR 421</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 421</td>
<td>Elements of Nuclear Engineering</td>
<td>Survey of nuclear engineering concepts and applications. Nuclear reactions, radioactivity, radiation interaction with matter, reactor physics, risk and dose assessment, applications in medicine, industry, agriculture, and research.</td>
<td>ENGR 300 or ENGR 301 or ENGR 310; MATH 208/MATH 208H; and PHYS 212/PHYS 212H</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Offered: FALL/SPR
ENGR 447 Multi-disciplinary Engineering Capstone
Prerequisites: Senior standing, professional admission to an engineering program, and instructor permission.
Description: Definition, scope, analysis, synthesis, and the design for the solution of a comprehensive engineering problem in any major area of engineering, with emphasis on multi-disciplinary engineering problems.
Credit Hours: 2-6
Min credits per semester: 2
Max credits per semester: 6
Max credits per degree: 6
Format: LEC

ENGR 450 Engineering Cooperative Education
Prerequisites: Senior standing; permission of College of Engineering Dean's Office and department chair of student's engineering major.
Notes: Special approval is required to take course for credit. Pass/No Pass only.
Description: Cooperative education work in a regularly established cooperative work-study program in any engineering curriculum.
Credit Hours: 12.00
Min credits per semester: 12
Max credits per semester: 12
Max credits per degree: 12
Format: FLD

ENGR 469 Technology, Science and Civilization
Prerequisites: Senior standing
Description: Study of the development of technology as a trigger of change upon humankind, from the earliest tools of Homo habilis to the advent of the radio telescope in exploring the creation of the universe. Tracing paths from early science to development of the sciences and technologies that dominate the new millennium.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
ACE: ACE 8 Civic/Ethics/Stewardship

ENGR 490 Global Experiences
Prerequisites: Permission.
Notes: Choice of subject matter and coordination of on- and off-campus activities are at the discretion of the instructor.
Description: Individual or group educational experience combining classroom lectures, discussions, and/or seminars with field and/or classroom studies in a foreign country.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 12
Format: FLD
ACE: ACE 9 Global/Diversity

ENGR 491 Senior Engineering Special Topics
Description: Topics vary.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 3
Format: LEC