AGRICULTURAL ENGINEERING (AGEN)

AGEN 100 Introduction to Biological Engineering and Agricultural Engineering
Crosslisted with: BSEN 100
Description: Description of careers in biomedical, environmental, water resources, food and bioproducts, and agricultural engineering. The human, economic and environmental impacts of engineering in society. Communication, design, teamwork, and the role of ethics and professionalism in engineering work.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC

AGEN 112 Computer-Aided Problem-Solving
Crosslisted with: BSEN 112
Prerequisites: MATH 106 or parallel
Description: Problem solving techniques and procedures through the use of Excel, MATLAB, and graphical methods. Emphasis on problem/solution communications with topics and problems from agricultural engineering and biological systems engineering.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LEC
Offered: SPRING
Prerequisite for: BSEN 212A, AGEN 212A; BSEN 212B, AGEN 212B; BSEN 212E, AGEN 212E

AGEN 212A Computational Tools & Modeling for Agricultural & Biological Systems Eng: MATLAB
Crosslisted with: BSEN 212A
Prerequisites: AGEN/BSEN 112
Description: Introduction to tools needed to develop computation-intense solutions for a wide variety of problems relevant to agricultural and biological systems engineering. Advanced problem solving techniques are illustrated using examples of scripts.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC
Offered: SPRING
Prerequisite for: BSEN 311; MECH 350

AGEN 212B Computational Tools & Modeling for Ag & Biological Sys Engr: Control Systems
Crosslisted with: BSEN 212B
Prerequisites: AGEN/BSEN 112.
Notes: This is a 5-week mini-course in which the lab time entails a combination of a 2nd lecture and followup laboratory applications.
Description: Introduction to microcontroller based embedded systems for agricultural and biological applications. Fundamental principles of microcontrollers and embedded systems through binary and hexadecimal number systems, digital logic, programming in integrated development environment, and microcontroller peripherals. Common agricultural and biological microcontroller input and output devices.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC
Offered: SPRING

AGEN 212E Computational Tools & Modeling for Agricultural & Biological Systems Eng: LabVIEW
Crosslisted with: BSEN 212E
Prerequisites: AGEN/BSEN 112.
Description: Introduction to tools needed to develop computation-intense solutions for a wide variety of problems relevant to agricultural and biological systems engineering. Advanced problem solving techniques are illustrated using examples of scripts, simulation methods, graphical programming, and their combination.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC
Offered: FALL/SPR

AGEN 225 Engineering Properties of Biological Materials
Crosslisted with: BSEN 225
Prerequisites: MATH 106
Description: Physical properties important to the design of harvesting, storage, and processing systems for agricultural crops; principles and techniques for measurement of properties including frictional effects, particle size, strength, moisture content, specific heat, and thermal conductivity.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: AGEN 324, BSEN 324

AGEN 260 Instrumentation I for Agricultural and Biological Systems Engineering
Crosslisted with: BSEN 260
Prerequisites: MATH 221 or parallel
Description: Developing concepts in instrumentation relevant to agricultural and biological systems. Fundamental concepts of charge, current, voltage, impedance, power, and circuit analysis within the context of biological engineering. Introduction to sensors and their applications. Data collection using modern acquisition hardware and software. Electrical safety and effects of electricity on the human body.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: SPRING
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Crosslisted with:</th>
<th>Prerequisites</th>
<th>Notes</th>
<th>Description</th>
<th>Credit Hours</th>
<th>Max credits per semester:</th>
<th>Format:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEN 303</td>
<td>Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEN 303</td>
<td>AGEN 303 Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEN 303</td>
<td>AGEN 303 Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEN 303</td>
<td>AGEN 303 Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEN 303</td>
<td>AGEN 303 Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEN 303</td>
<td>AGEN 303 Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEN 303</td>
<td>AGEN 303 Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEN 303</td>
<td>AGEN 303 Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEN 303</td>
<td>AGEN 303 Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEN 303</td>
<td>AGEN 303 Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEN 303</td>
<td>AGEN 303 Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEN 303</td>
<td>AGEN 303 Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEN 303</td>
<td>AGEN 303 Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEN 303</td>
<td>AGEN 303 Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEN 303</td>
<td>AGEN 303 Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AGEN 303</td>
<td>AGEN 303 Principles of Process Engineering</td>
<td>BSEN 303</td>
<td>MATH 221; MECH 310 or CIVE 310 or CHME 332 recommended as preq or parallel.</td>
<td>Notes:</td>
<td>Introduction to performance parameters and characteristics of pumps, fans, presses, and solids handling, size reduction, separation and agitation equipment. Application of the various technologies studied with analysis of example systems. Credit Hours: 3 Max credits per semester: 3 Max credits per degree: 3</td>
<td>LEC</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
AGEN 436 Embedded Controls for Agricultural Applications
Crosslisted with: MSYM 436, AGEN 836, MSYM 836
Prerequisites: AGEN/BSEN 260 or MSYM 416
Description: Introduction to the basics of embedded controller programming, and the development of Controller Area Network (CAN) bus systems in agricultural applications. Interfacing sensors with analog and digital signals, closed loop control of actuators, transmission and reception of CAN messages, programming of CAN messages in a distributed controller set up for sensor data acquisition, and actuator control will be studied.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL

AGEN 441 Animal Waste Management
Crosslisted with: AGEN 841, BSEN 441, BSEN 841
Prerequisites: Senior standing.
Description: Characterization of wastes from animal production. Specification and design of collection, transport, storage, treatment, and land application systems. Air and water pollution, regulatory and management aspects.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

AGEN 443 Design of Light-Frame Structures
Prerequisites: AGEN 324 or MECH 325 or parallel.
Description: Engineering design for strength, economy, function and safety of light-frame structures; emphasis on wood, concrete, and steel elements; design project required.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

AGEN 446 Unit Operations of Biological Processing
Crosslisted with: BSEN 446, BSEN 846, AGEN 846
Prerequisites: AGEN/BSEN 225; and AGEN/BSEN 344
Description: Application of heat, mass, and moment transport in analysis and design of unit operations for biological and agricultural materials. Evaporation, drying, distillation, extraction, leaching, thermal processing, membrane separation, centrifugation, and filtration.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: SPRING
Prerequisite for: BSEN 935

AGEN 453 Irrigation and Drainage Systems Engineering
Crosslisted with: AGEN 853, BSEN 453, BSEN 853
Prerequisites: CIVE 310 or MECH 310; AGEN 344 or BSEN 344.
Description: Analytical and design consideration of evapotranspiration, soil moisture, and water movement as related to irrigation and drainage systems; analysis and design of components of irrigation and drainage systems including water supplies, pumping plants, sprinkler systems, and center pivots.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: AGEN 854, MSYM 854; AGEN 953

AGEN 460 Instrumentation and Controls
Crosslisted with: AGEN 860, BSEN 460, BSEN 860
Prerequisites: ELEC 211 or ELEC 215.
Description: Analysis and design of instrumentation and controls for agricultural and biological production, management and processing. Theory of basic sensors and transducers, analog and digital electrical control circuits, and the interfacing of computers with instruments and controls. Emphasis on signal analysis and interpretation for improving system performance.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

AGEN 470 Design I in Agricultural and Biological Systems Engineering
Crosslisted with: BSEN 470
Prerequisites: Professional admission into AGEN or BSEN; and permission.
Description: Definition, scope, analysis, and synthesis of a comprehensive design problem within the areas of emphasis in the Department of Biological Systems Engineering. Identification of a client's engineering problem to solve, and development of objectives and anticipated results.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC
Offered: FALL/SPR
Prerequisite for: AGEN 480, BSEN 480

AGEN 480 Design II in Agricultural and Biological Systems Engineering
Crosslisted with: BSEN 480
Prerequisites: BSEN/AGEN 470
Description: Definition, scope, analysis, and synthesis of a comprehensive engineering problem in an engineering area of emphasis within the Department of Biological Systems Engineering. Design activity using the team approach to develop a solution.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LAB
ACE: ACE 10 Integrated Product
AGEN 492 Special Topics in Agricultural Engineering
Crosslisted with: AGEN 892
Prerequisites: Permission
Description: Subject matter in emerging areas of Agricultural Engineering not covered in other courses within the curriculum. Topics, activities, and delivery methods vary.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Format: LEC

AGEN 496 Independent Study
Crosslisted with: BSEN 496
Prerequisites: Permission
Notes: Topics vary.
Description: Investigation and written report on engineering problems not covered in sufficient depth through existing courses.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Format: IND

AGEN 499H Honors Thesis
Crosslisted with: BSEN 499H
Prerequisites: Senior or junior standing, admission to the University Honors Program.
Description: Independent project which meets the requirements of the University Honors Program, conducted under the guidance of a faculty member in the Department of Biological Systems Engineering. The project should contribute to the advancement of knowledge in the field. Written thesis and formal presentation required.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Format: IND