METEOROLOGY-CLIMATOLOGY

Description
The Department of Earth and Atmospheric Sciences offers a bachelor of science degree in meteorology-climatology. This degree program is comprehensive, but flexible so that you can pursue your own interests within the broad field of atmospheric sciences while meeting the federal government requirements for employment as a meteorologist. If you choose to further your education, your degree also prepares you for graduate school in the atmospheric sciences and related fields.

A bachelor's degree in meteorology-climatology fulfills the recommended curriculum of the American Meteorological Society (AMS) and the University Corporation for Atmospheric Research (UCAR). The degree program also meets or exceeds the minimum hiring requirements for employment as a meteorologist with the Federal government, thus preparing you for employment with federal agencies such as the National Weather Service, National Aeronautics and Space Administration, Environmental Protection Agency, National Park Service, and military.

With this degree, you can also work in private weather consulting; broadcast meteorology; and the agriculture, education, and energy sectors.

The University of Nebraska–Lincoln is a member of UCAR.

Program Assessment. To assist the department in evaluating the effectiveness of its program in meteorology-climatology, each major during their last semester prior to graduation will participate in an exit survey to gather information about the program from the student's perspective. The undergraduate advisor will inform students of the scheduling and format of the assessment activities. Results of participation in this assessment activity will in no way affect a student's GPA or graduation.

College Admission
The entrance requirements for the College of Arts and Sciences (CAS), including any of the majors or minors offered through the college, are the same as the University of Nebraska–Lincoln General Admission Requirements. In addition to these requirements, the College of Arts and Sciences strongly recommends a third and fourth year of one foreign language in high school. Four years of high school coursework in the same language will fulfill the College of Arts and Sciences' language requirement. It will also allow students to continue language study at a more advanced level at the University of Nebraska–Lincoln and provide more opportunity to study abroad.

ACADEMIC AND CAREER Advising
Academic and Career Advising Center
The Academic and Career Advising Center in 107 Oldfather Hall is the undergraduate hub for CAS students in all majors. Centrally located and easily accessed, students encounter friendly, knowledgeable people who are eager to help. Students visit the Advising Center in 107 Oldfather Hall to:

- Choose or change their major, minor, or degree program.
- Check in on policies, procedures, and deadlines.
- Get a college approval signature from the Dean's representative, Sr. Director of Advising and Student Success.

While the assigned academic advisor should be the student's primary contact, there are daily walk-ins from 12-3 where a general academic advisor can answer a quick question. In addition, the CAS Career Coaches are located here. They help students explore majors and minors, gain experience, and develop a plan for life after graduation. Not sure where to go or who to ask? The Advising Center team can help.

Assigned Academic Advisors
Academic advisors are critical resources dedicated to students' academic, personal, and professional success. Every CAS student is assigned an academic advisor based on their primary major. Since most CAS students have more than just a single major, it is important to get to know the advisor for any minors or additional majors. Academic advisors work closely with the faculty to provide the best overall support and discipline-specific expertise.

Assigned advisors are listed in MyRED (https://its.unl.edu/myunl/) and their offices may be located in or near the department of the major for which they advise or in the Academic and Career Advising Center. Students who have declared a pre-health or pre-law area of interest will also work with advisors in the Exploratory and Pre-Professional Advising Center (Explore Center) in 127 Love South, who are specially trained to guide students preparing to enter a professional school.

For complete and current information on advisors for majors, minors, or pre-professional areas, contact the Arts and Sciences Academic and Career Advising Center, 107 Oldfather Hall, 402-472-4190, http://cas.unl.edu/advising (http://cas.unl.edu/advising/).

Career Coaching
The College believes that Academics + Experience = Opportunities and encourages students to complement their academic preparation with real-world experience, including internships, research, education abroad, service, and leadership. Arts and sciences students have access to a powerful network of faculty, staff, and advisors dedicated to providing information and support for their goals of meaningful employment or advanced education. Arts and sciences graduates have unlimited career possibilities and carry with them important career competencies—communication, critical thinking, creativity, context, and collaboration. They have the skills and adaptability that employers universally value. Graduates are not only prepared to effectively contribute professionally in the real world, but they have a solid foundation to excel in an increasingly global, technological, and interdisciplinary world.

Students should contact the career coaches in the Arts and Sciences Academic and Career Advising Center in 107 Oldfather, or their assigned advisor, for more information. The CAS career coaches help students explore career options, identify ways to build experience, and prepare to apply for internships, jobs, or graduate school, including help with resumes, applications, and interviewing.

ACE Requirements
Students must complete one course for each of the ACE Student Learning Outcomes below. Certified course choices are published in the degree audit, or visit the ACE website (http://ace.unl.edu) for the most current list of certified courses.
ACE Student Learning Outcomes

ACE 1: Write texts, in various forms, with an identified purpose, that respond to specific audience needs, integrate research or existing knowledge, and use applicable documentation and appropriate conventions of format and structure.

ACE 2: Demonstrate competence in communication skills.

ACE 3: Use mathematical, computational, statistical, logical, or other formal reasoning to solve problems, draw inferences, justify conclusions, and determine reasonableness.

ACE 4: Use scientific methods and knowledge to pose questions, frame hypotheses, interpret data, and evaluate whether conclusions about the natural and physical world are reasonable.

ACE 5: Use knowledge, historical perspectives, analysis, interpretation, critical evaluation, and the standards of evidence appropriate to the humanities to address problems and issues.

ACE 6: Use knowledge, theories, and research perspectives such as statistical methods or observational accounts appropriate to the social sciences to understand and evaluate social systems or human behaviors.

ACE 7: Use knowledge, theories, or methods appropriate to the arts to understand their context and significance.

ACE 8: Use knowledge, theories, and analysis to explain ethical principles and their importance in society.

ACE 9: Exhibit global awareness or knowledge of human diversity through analysis of an issue.

ACE 10: Generate a creative or scholarly product that requires broad knowledge, appropriate technical proficiency, information collection, synthesis, interpretation, presentation, and reflection.

College Degree Requirements

College Distribution Requirements – BA and BS

The College of Arts and Sciences distribution requirements are common to both the bachelor of arts and bachelor of science degrees and are designed to ensure a range of courses. By engaging in study in several different areas within the College, students develop the ability to learn in a variety of ways and apply their knowledge from a variety of perspectives. All requirements are in addition to University ACE requirements, and no course can be used to fulfill both an ACE outcome and a College Distribution Requirement.

- A student may not use a single course to satisfy more than one College Distribution Requirement, with the exception of CDR Diversity. Courses used to meet CDR Diversity may also meet CDR Writing, CDR Humanities, or CDR Social Science.
- Independent study or reading courses and internships cannot be used to satisfy distribution requirements.
- Courses from interdisciplinary programs will be applied in the same area as courses from the home/cross-listed department.

College Distribution Requirements

| CDR: Written Communication | 3 |
| CDR: Natural, Physical, and Mathematical Sciences with Lab | 4 |

Select from courses approved for ACE outcome 1.

College Distribution Requirement, with the exception of CDR Diversity. Courses used to meet CDR Diversity may also meet CDR Writing, CDR Humanities, or CDR Social Science.

Language Requirement

The University of Nebraska–Lincoln and the College of Arts and Sciences place great value on academic exposure and proficiency in a second language. The University of Nebraska–Lincoln entrance requirement of two years of the same foreign language or the College’s language distribution requirement (CDR: Language) will rarely be waived and only with relevant documentation. See the main College of Arts and Sciences page for more details.

Scientific Base - BS Only

The bachelor of science degree requires students to complete 60 hours in mathematical, physical, and natural sciences. Approved courses for scientific base credit come from the following College of Arts and Sciences disciplines: actuarial science, anthropology (selected courses), astronomy, biochemistry (excluding BIO 101), biological sciences (excluding BIOS 100 or BIOS 203), chemistry (excluding CHEM 101), computer science (excluding CSCE 10), geography (selected courses), geology, life sciences, mathematics (excluding courses below MATH 104), meteorology, microbiology (excluding MBIO 101), and physics.
See your Degree Audit or your assigned academic advisor for a complete list, including individual classes that fall outside of the disciplines listed above. Up to 12 hours of scientific and technical courses offered by other colleges may be accepted toward this requirement with the approval of the College of Arts and Sciences. See your assigned academic advisor to start the approval process.

Minimum Hours Required for Graduation
A minimum of 120 semester hours of credit is required for graduation from the College of Arts and Sciences. A cumulative grade point average of at least 2.0 is required.

Grade Rules
Restrictions on C- and D Grades
The College will accept no more than 15 semester hours of C- and D grades from other domestic institutions except for UNO and UNK. All courses taken at UNO and UNK impact the UNL transcript. No transfer of C- and D grades can be applied toward requirements in a major or a minor. No University of Nebraska–Lincoln C- and D grades can be applied toward requirements in a major or a minor. International coursework (including education abroad) with a final grade equivalent to a C- or lower will not be validated by the College of Arts and Sciences departments to be degree applicable.

Pass/No Pass Privilege
The College of Arts and Sciences adheres to the University regulations for the Pass/No Pass (P/N) privilege with the following additional regulations:

• Pass/No Pass hours can count toward fulfillment of University ACE requirements and college distribution requirements up to the 24-hour maximum.
• Most arts and sciences departments and programs do not allow courses graded Pass/No Pass to apply to the major or minor. Students should refer to the department's or program's section of the catalog for clarification. By college rule, departments can allow up to 6 hours of Pass/No Pass in the major or minor.
• Departments may specify that certain courses of theirs can be taken only on a P/N basis.
• The college will permit no more than a total of 24 semester hours of P/N grades to be applied toward degree requirements. This total includes all Pass grades earned at the University of Nebraska–Lincoln and other U.S. schools. NOTE: This 24-hour limit is more restrictive than the University regulation.

Grading Appeals
A student who feels that he/she has been unfairly graded must ordinarily take the following sequential steps in a timely manner, usually by initiating the appeal in the semester following the awarding of the grade:

1. Talk with the instructor concerned. Most problems are resolved at this point.
2. Talk to the instructor's department chairperson.
3. Take the case to the Grading Appeal Committee of the department concerned. The Committee should be contacted through the department chairperson.
4. Take the case to the College Grading Appeals Committee by contacting the Dean's Office, 1223 Oldfather Hall.

Course Level Requirements
Courses Numbered at the 300 or 400 Level
Thirty (30) of the 120 semester hours of credit must be in courses numbered at the 300 or 400 level. Of those 30 hours, 15 hours (1/2) must be completed in residence at the University of Nebraska–Lincoln.

Residency Requirement
Students must complete at least 30 of the 120 total hours for their degree at the University of Nebraska–Lincoln. Students must complete at least 1/2 of their major coursework, including 6 hours at the 300 or 400 level in their major and 15 of the 30 hours required at the 300 or 400 level, in residence. Credit earned during education abroad may be used toward the residency requirement only if students register through the University of Nebraska–Lincoln.

Catalog to Use
Students must fulfill the requirements stated in the catalog for the academic year in which they are first admitted to and enrolled as a degree-seeking student at the University of Nebraska–Lincoln. In consultation with advisors, a student may choose to follow a subsequent catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at the University of Nebraska–Lincoln in the College of Arts and Sciences. Students must complete all degree requirements from a single catalog year. Beginning in 1990-1991, the catalog which a student follows for degree requirements may not be more than 10 years old at the time of graduation.

Learning Outcomes
Graduates of meteorology-climatology will be able to:

1. Explain how the atmosphere interacts with other components of the Earth System to exchange matter and energy on short (weather) and long (climate) timescales.
2. Apply mathematical, statistical, and computer programming tools to analyze meteorological data in order to conduct research, make forecasts, and develop conceptual models for the interaction of the atmosphere with other components of the Earth system.
3. Synthesize a broad understanding of the basic processes and system-scale interactions to generate short and long term predictions of the weather and climate.
4. Integrate disciplinary knowledge, technical proficiency, information collection, and data synthesis and analysis to conduct and interpret scientific research.
5. Communicate weather and climate information, research, and events to diverse audiences using multi-media presentations and written scientific reports.

Major Requirements
Core Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>METR 100</td>
<td>Weather and Climate</td>
<td>4</td>
</tr>
<tr>
<td>METR 153</td>
<td>Introduction to Scientific Programming in Atmospheric Science</td>
<td>3</td>
</tr>
<tr>
<td>METR 205</td>
<td>Introduction to Atmospheric Science</td>
<td>4</td>
</tr>
<tr>
<td>METR 223</td>
<td>Atmospheric Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>METR 311</td>
<td>Dynamic Meteorology I</td>
<td>3</td>
</tr>
<tr>
<td>METR 312</td>
<td>Dynamic Meteorology II</td>
<td>3</td>
</tr>
<tr>
<td>METR 323</td>
<td>Physical Meteorology</td>
<td>4</td>
</tr>
<tr>
<td>METR 341</td>
<td>Synoptic Meteorology</td>
<td>4</td>
</tr>
</tbody>
</table>
Select one of the following Capstone courses:
- METR 442 Advanced Synoptic Meteorology-Climatology
- METR 470 The Climate System: Analysis and Prediction

Select one of the following courses:
- METR 463 Radar Meteorology
- METR 464 Satellite Meteorology
- METR 465 Satellite Remote Sensing of Atmosphere

Total Credit Hours: 36
1 Capstone in either meteorology or climatology respectively. Consult with the faculty advisor.

Specific Major Requirements

Additional Advanced Meteorology Courses
Select 12 hours of 400-level METR courses in consultation with the faculty advisor.
Credit Hours Subtotal: 12
2 No more than 3 hours from METR 446 or METR 497 may count toward the major.

Ancillary Requirements

Mathematics
- MATH 106 Calculus I
- MATH 107 Calculus II
- MATH 208 Calculus III
- MATH 221 Differential Equations
- STAT 380 Statistics and Applications
Credit Hours Subtotal: 19

Physics
- PHYS 211 General Physics I
& PHYS 221 and General Physics Laboratory I
- PHYS 212 General Physics II
Credit Hours Subtotal: 9

Chemistry
- CHEM 109A General Chemistry I
& CHEM 109L General Chemistry I Laboratory
Credit Hours Subtotal: 4

Total Credit Hours: 32
1 A minor in math can be obtained with the completion of the required mathematics and statistics courses.

ADDITIONAL MAJOR REQUIREMENTS

Grade Rules

C- and D Grades
A grade of C or above is required for all courses in the major and minor, including ancillary courses.

Pass/No Pass
No course taken Pass/No Pass will be counted toward the major or the minor.

Requirements for Minor Offered by Department

Select either the Meteorology or Climatology Emphasis for the minor requirements.

Meteorology Emphasis (22-23 hours)
- METR 100 Weather and Climate
- METR 205 Introduction to Atmospheric Science
- METR 311 Dynamic Meteorology I
- METR 323 Physical Meteorology
- METR 341 Synoptic Meteorology
Select one of the following 400-level meteorology courses:
- METR 415 General Circulation of the Atmosphere
- METR 421 Cloud Physics
- METR 428 Air Pollution
- METR 433 Boundary-layer Meteorology
- METR 442 Advanced Synoptic Meteorology-Climatology
- METR 443 Severe Storms Meteorology-Climatology
- METR 444 Mesoscale Meteorology
- METR 446 Broadcast Meteorology
- METR 454 Statistical Analysis of Atmospheric Data
- METR 463 Radar Meteorology
- METR 464 Satellite Meteorology
- METR 465 Satellite Remote Sensing of Atmosphere
- METR 471 Tropical Meteorology

Total Credit Hours: 22-23

Climatology Emphasis (20 hours)

Required Courses
- METR 100 Weather and Climate
- METR 205 Introduction to Atmospheric Science
- METR 270 Introduction to Climatology
- METR 370 Applied Climatology
Credit Hours Subtotal: 14

Elective Courses
Select two of the following 400-level climate courses:
- METR 408 Microclimate: The Biological Environment
- METR 450 Climate and Society
- METR 454 Statistical Analysis of Atmospheric Data
- METR 470 The Climate System: Analysis and Prediction
- METR 475 Physical Climatology
- METR 478 Regional Climatology

Credit Hours Subtotal: 6

Total Credit Hours: 20

Grade Rules

C- and D Grades
A grade of C or above is required for all courses in the major and minor.

Pass/No Pass
No course taken Pass/No Pass will be counted toward the major or the minor.
METR 100 Weather and Climate
Prerequisites: MATH 101 or higher; or a qualifying Math Placement Exam score for MATH 102 or 104 or higher
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Prerequisite for: GEOL 372; METR 153; METR 205; METR 270; METR 446
ACE: ACE 4 Science

METR 140 Severe and Unusual Weather
Prerequisites: MATH 101 or higher; or a qualifying Math Placement Exam score for MATH 102 or 104 or higher.
Notes: METR 140 will not count toward the major in METR.
Description: Meteorological basics to help understand ice storms, blizzards, tornadoes, hurricanes, flooding, droughts, and other unusual weather.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 4 Science

METR 153 Introduction to Scientific Programming in Atmospheric Science
Prerequisites: METR 100
Notes: No prior programming experience is required.
Description: Introduction to problem solving with computers using MATLAB. Topics include language syntax, data types, program organization, problem-solving methods, and algorithm design and verification. Basics of problem solving with computers, and the skills necessary to analyze and visualize geophysical data sets.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 9
Grading Option: Graded
Offered: SPRING
Prerequisite for: METR 223; METR 311; METR 323

METR 180 Climate Change, Energy, and the Environment
Description: Concepts and processes of the environment, energy, and climate change and how they are interrelated.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 4 Science

METR 205 Introduction to Atmospheric Science
Prerequisites: MATH 106; METR 100; PHYS 211 or 211H.
Description: Conceptual foundations for synoptic and dynamic meteorology. Meteorological data analysis, the dynamics of atmospheric motions, and atmospheric thermodynamics.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Prerequisite for: METR 223; METR 311; METR 323

METR 223 Atmospheric Thermodynamics
Prerequisites: METR 153; METR 205; MATH 107 or parallel.
Description: Basic thermodynamic concepts relevant to atmospheric processes, atmospheric stability, and cloud and precipitation micro-physics.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Prerequisite for: METR 341

METR 270 Introduction to Climatology
Prerequisites: METR 100 or GEOL 101
Description: Introduction to the components of Earth climate system and the dynamic interactions between them. Topics include spatial and temporal variations in Earth climate, and how observations, models, and theory are used to make predictions about the future climate. Explore the impact of human activities on the global climate.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Offered: FALL

METR 291 Special Topics in Meteorology-Climatology
Description: Topics vary.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Grading Option: Graded with Option

METR 296 Independent Study in Meteorology-Climatology
Prerequisites: Permission.
Description: Independent reading or research under direction of a faculty member.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option

METR 311 Dynamic Meteorology I
Prerequisites: METR 153; MATH 208/208H; METR 205; PHYS 211/211H
Description: Equations of thermodynamics, momentum, and continuity are derived and applied to atmospheric motion. Energy conservation, flows, and conversions.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: METR 312

METR 312 Dynamic Meteorology II
Prerequisites: METR 311; MATH 221/821.
Description: Applications of the principles of dynamic meteorology to the problems of forecasting and meteorological problems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL/SPR
METR 323 Physical Meteorology

Prerequisites: METR 153; METR 205; PHYS 212/212H
Description: Physical principles that provide the foundation for meteorology. Absorption, scattering, and transmission of radiation in the atmosphere, atmospheric optics, atmospheric electricity, and lightning.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option

METR 341 Synoptic Meteorology

Prerequisites: METR 223
Description: Dynamic and thermodynamic concepts and principles applied to synoptic-scale weather forecasting. Dynamics, energetics, structure, evolution, and motion of extra-tropical cyclones. Meteorological communications, interpretation and analysis of weather maps, and thermodynamic diagrams.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option

METR 370 Applied Climatology

Crosslisted with: NRES 370
Prerequisites: Junior or Senior Standing
Description: Physical factors that create the biological environment. Processes that give rise to spatial and temporal differences in climate. Various interrelationships between humans and climate. Influence of climate on building styles, the economy, water resources, human health, and society. Humans' inadvertent and purposeful modification of the atmosphere.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL

METR 408 Microclimate: The Biological Environment

Crosslisted with: AGRO 408, GEOG 408, HORT 408, NRES 408, WATS 408, AGRO 808, GEOG 808, HORT 808, METR 808, NRES 808
Prerequisites: Junior standing, MATH 106 or equivalent, 5 hrs physics, major in any of the physical or biological sciences or engineering.
Description: Physical factors that create the biological environment. Radiation and energy balances of earth's surfaces, terrestrial and marine. Temperature, humidity, and wind regimes near the surface. Control of the physical environment through irrigation, windbreaks, frost protection, manipulation of light, and radiation. Applications to air pollution research. Instruments for measuring environmental conditions and remote sensing of the environment.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: AGRO 907, HORT 907, METR 907, NRES 907; BSEN 954, NRES 954

METR 415 General Circulation of the Atmosphere

Crosslisted with: METR 815
Prerequisites: Junior standing; METR 475/875; PHYS 211/211H; and PHYS 221.
Description: Development of the atmospheric circulation regimes, from planetary scale (e.g., the planetary waves) to synoptic scale (e.g., the cyclones and anticyclones) and mesoscale, their seasonal variations, and their roles in horizontal vertical energy and water transport and budgets in the Earth system.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

METR 421 Cloud Physics

Crosslisted with: METR 821
Prerequisites: METR 223 and METR 323 or equivalent
Description: Buoyancy and parcel mixing, cloud physics instrumentation, the role of aerosols in precipitation processes, growth of liquid cloud droplets/raindrops/ice crystals, processes associated with falling precipitation particles, drop size distributions and their moments, applications to convection, and parameterizations of cloud microphysical processes for numerical modeling applications.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

METR 428 Air Pollution

Crosslisted with: METR 828
Prerequisites: 6 hrs METR; CHEM 109 or CHEM 109A and 109L
Description: Basic processes (e.g., emission, transport, first-order chemical reaction, and deposition) associated with air pollution and their combination with meteorology for air quality forecasting. Environmental topics: acid rain; smog; air pollution; ozone hole; greenhouse gases; aerosols; long-range transport; civic regulations and international treaties on air pollution; and climate change.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

METR 433 Boundary-layer Meteorology

Crosslisted with: METR 833
Prerequisites: METR 223 and MATH 208/208H
Description: Basic concepts of atmospheric turbulence and fundamental dynamics, thermodynamics, and structure of the atmospheric boundary layer are discussed. Atmospheric boundary layer parameterizations used in modern weather and climate models are presented.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: METR 933
METR 442 Advanced Synoptic Meteorology-Climatology
Crosslisted with: METR 842
Prerequisites: METR 341.
Description: Analysis and forecasting of subsynoptic-scale weather systems. Convection, thunderstorm models, severe local storm forecasting techniques, mesoscale convective complexes, vertical cross-sections, isentropic analysis, and weather radar.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Prerequisite for: METR 944
ACE: ACE 10 Integrated Product

METR 443 Severe Storms Meteorology-Climatology
Crosslisted with: METR 843
Prerequisites: METR 311, METR 341 or parallel
Description: Dynamics of various types of severe weather (blizzards, flash floods, lightning, thunderstorms and winter and summer tornado outbreaks). Interpretation of the numerical and statistical models utilized to forecast these phenomena. Synoptic case studies of severe weather occurrences. Recent research on severe weather.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

METR 444 Mesoscale Meteorology
Crosslisted with: METR 844
Prerequisites: METR 311
Description: Dynamics and conceptual models of mesoscale meteorological phenomena and processes.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

METR 446 Broadcast Meteorology
Prerequisites: METR 100
Notes: Only 3 hours of credit from METR 446 or METR 497 may be applied to the major.
Description: Information about the history and current status of broadcast meteorology and related technology. Procedures and requirements to obtain Professional Society certification/seal in Broadcast Meteorology. Address on air requirements mandated by the Federal FCC rules and regulations and social impacts of broadcast meteorology. Opportunity to gain experience in presenting weather information through various media outlets, including the use of chromakey technology and social media.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

METR 450 Climate and Society
Crosslisted with: AGRO 450, GEOG 450, NRES 452, AGRO 850, GEOG 850, METR 850, NRES 852
Prerequisites: Junior standing or above.
Notes: Offered spring semester of even-numbered calendar years.
Description: Impact of climate and extreme climatic events on society and societal responses to those events. Global in scope and interdisciplinary.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING

METR 453 GIS in Earth and Atmospheric Sciences
Crosslisted with: GEOL 453, GEOL 853, METR 853
Prerequisites: Junior or above standing; and one of the following: GEOL 100 or 101, or METR 100
Description: Basic concepts of GIS, hands-on experience with various case studies from geology, meteorology, climatology and environmental applications.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded

METR 454 Statistical Analysis of Atmospheric Data
Crosslisted with: METR 854
Prerequisites: 6 hrs METR and MATH 107/107H.
Description: Application of univariate statistics, hypothesis testing, statistical forecasting, forecast verification, time-series analysis, principal component analysis, and cluster/multivariate analysis to atmospheric data for different applications in the atmospheric sciences (from short-term weather forecast to long-term climate prediction).
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: METR 965

METR 463 Radar Meteorology
Crosslisted with: METR 863
Prerequisites: METR 323.
Description: The fundamental principles of weather radars and the basic application of these principles.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

METR 464 Satellite Meteorology
Crosslisted with: METR 864
Prerequisites: METR 223
Description: Concepts and principles related to meteorological observations from satellites. Applications for weather analysis and forecasting.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Crosslisted with</th>
<th>Prerequisites</th>
<th>Description</th>
<th>Credit Hours</th>
<th>Max credits per semester</th>
<th>Max credits per degree</th>
<th>Grading Option</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>METR 465</td>
<td>Satellite Remote Sensing of Atmosphere</td>
<td>METR 865</td>
<td>METR 323</td>
<td>Principles of atmospheric radiation and techniques for satellite image processing. Application of data calibration, image registration and enhancement, noise filtering and multi-spectral classification of satellite images. Survey of various satellite sensors used for monitoring different atmospheric processes and constituents.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td></td>
</tr>
<tr>
<td>METR 469</td>
<td>Bio-Atmospheric Instrumentation</td>
<td>AGRO 469, GEOG 469, HORT 407, MSYM 469, NRES 469, AGRO 869, GEOG 869, HORT 807, METR 869, MSYM 869, NRES 869</td>
<td>Junior standing; MATH 106; 4 hrs physics; physical or biological science major.</td>
<td>Discussion and practical application of principles and practices of measuring meteorological and related variables near the earth's surface including temperature, humidity, precipitation, pressure, radiation and wind. Performance characteristics of sensors and modern data collection methods are discussed and evaluated.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td></td>
</tr>
<tr>
<td>METR 470</td>
<td>The Climate System: Analysis and Prediction</td>
<td>METR 870</td>
<td>Senior standing; major or minor in meteorology.</td>
<td>Maintenance of the climate system and climate change over time. Global budgets of energy, water, and momentum and their balance. Development of simple, physically-based models of climate and of climate change.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td></td>
</tr>
<tr>
<td>METR 471</td>
<td>Tropical Meteorology</td>
<td>METR 871</td>
<td>METR 223 and METR 311</td>
<td>Atmospheric phenomena unique to the tropics, and their connection to the global circulation.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td></td>
</tr>
<tr>
<td>METR 475</td>
<td>Physical Climatology</td>
<td>METR 875</td>
<td>METR 205</td>
<td>Global energy and water balance regimes of the earth and its atmosphere. Utilization of physical laws to reveal causes and effects of interrelationships in the climatic system.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td></td>
</tr>
<tr>
<td>METR 478</td>
<td>Regional Climatology</td>
<td>METR 878, NRES 478; 878</td>
<td>NRES/METR 370</td>
<td>Regional differentiation of the climates of the earth on both a descriptive and dynamic basis. The chief systems of climatic classification.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td></td>
</tr>
<tr>
<td>METR 479</td>
<td>Hydroclimatology</td>
<td>NRES 479, WATS 479, BSEN 479, NRES 879, METR 879, BSEN 879</td>
<td>NRES 208 or METR 100 or METR/NRES 370.</td>
<td>Interaction between earth's climate and the hydrologic cycle. Energy and water fluxes at the land-atmosphere interface. Atmospheric moisture transport, precipitation, evaporation, snowmelt, and runoff. Impacts of climate variability and change on the hydrologic cycle.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td></td>
</tr>
<tr>
<td>METR 483</td>
<td>Global Climate Change</td>
<td>METR 883, NRES 467, 867</td>
<td>Senior standing; and METR 475/875.</td>
<td>Interaction between earth's climate and the hydrologic cycle. Energy and water fluxes at the land-atmosphere interface. Atmospheric moisture transport, precipitation, evaporation, snowmelt, and runoff. Impacts of climate variability and change on the hydrologic cycle.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td></td>
</tr>
<tr>
<td>METR 487</td>
<td>Earth's Climate: Past, Present, Future</td>
<td>METR 887</td>
<td>METR 479, NRES 467, NRES 878</td>
<td>Interaction between earth's climate and the hydrologic cycle. Energy and water fluxes at the land-atmosphere interface. Atmospheric moisture transport, precipitation, evaporation, snowmelt, and runoff. Impacts of climate variability and change on the hydrologic cycle.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td></td>
</tr>
<tr>
<td>METR 491</td>
<td>Special Topics in Meteorology-Climatology</td>
<td>METR 891</td>
<td>Topics vary.</td>
<td>Topics vary.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td></td>
</tr>
<tr>
<td>AGRO 869, GEOG 869, HORT 807, MSYM 869, NRES 469, AGRO 869, GEOG 869, HORT 807, METR 869, MSYM 869, NRES 869</td>
<td>Junior standing; MATH 106; 4 hrs physics; physical or biological science major.</td>
<td>Discussion and practical application of principles and practices of measuring meteorological and related variables near the earth's surface including temperature, humidity, precipitation, pressure, radiation and wind. Performance characteristics of sensors and modern data collection methods are discussed and evaluated.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Graded with Option</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites:
- METR 205
- METR 471
- METR 470
- METR 479
- METR 487
- METR 483
- METR 491

Crosslisted with:
- AGRO 469, GEOG 469, HORT 407, MSYM 469, NRES 469, AGRO 869, GEOG 869, HORT 807, METR 869, MSYM 869, NRES 869
- NRES 479, WATS 479, BSEN 479, NRES 879, METR 879, BSEN 879
- NRES 208 or METR 100 or METR/NRES 370
- METR 883, NRES 467, NRES 867
- NRES 478, WATS 478, BSEN 478, NRES 878
- NRES 479, WATS 479, BSEN 479, NRES 879, METR 879, BSEN 879

Notes:
- Offered spring semester of even-numbered calendar years.
- Offered fall semester of even-numbered calendar years.
Meteorology-Climatology (B.S.)

Career Information

The following represents a sample of the internships, jobs and graduate school programs that current students and recent graduates have reported.

Transferable Skills

- Analyze and explain data
- Use quantitative analysis techniques
- Use qualitative analysis techniques
- Define problems and identifying causes
- Apply mathematical and scientific skills to solve real-world problems
- Make predictions using mathematical, statistical, and scientific modeling methods
- Make decisions carefully, using appropriate theoretical frameworks
- Simplify complex information and present it to others
- Communicate results of scientific experiments to scientific and non-scientific audiences
- Read, understand, and critically review scientific information
- Support and communicate claims using clear evidence
- Listen actively and facilitate individual and group communication
- Collaborate with a team to develop solutions
- Communicate clearly using different forms of writing to and for a variety of different audiences
- Coordinate people, activities, and event details

Jobs of Recent Graduates

- Meteorologist, Nebraska Department of Roads - Lincoln NE
- Software Engineer, Contract Northup Group - Bellevue NE
- Meteorologist, Weather or Not - Shawnee KS
- Research Associate, High Plains Regional Climate Center - Lincoln NE
- Meteorologist, Hoak Media - Grand Junction CO
- Coding Specialist, National Research Corporation - Lincoln NE
- Meteorologist, National Weather Service - Silver Spring MD
- Meteorologist, Nebraska Department of Roads - Lincoln NE
- Systems Engineer, MITRE Corporation - McLean VA
- Meteorologist, National Weather Service - Silver Spring MD
- Teaching Assistant, University of Georgia - Athens GA
- Extension Educator, University of Nebraska-Lincoln - Phelps and Gosper Counties
- Underwriting Assistant, National Indemnity - Omaha NE
- Naval Student Pilot, U.S. Navy - Pensacola FL

Internships

- Weather Intern, Channel 8 - Lincoln NE
- Research Technician, Planetary Data, Inc. - Prague NE
- Research Assistant, UNL Earth and Atmospheric Sciences - Lincoln NE
- Architectural Engineering Intern, Ezenics, Inc. - Omaha NE
- Intern, MMC Contractors - Omaha NE

Graduate & Professional Schools

- Master's Degree, Earth & Atmospheric Science - Meteorology-Climatology specialization, University of Nebraska-Lincoln - Lincoln NE
Meteorology-Climatology

- Ph.D., Earth & Atmospheric Science - Meteorology/Climatology,
 University of Nebraska-Lincoln - Lincoln NE