METEOROLOGY-CLIMATOLOGY

Description

The Department of Earth and Atmospheric Sciences offers a bachelor of science degree in meteorology-climatology. This degree program is comprehensive, but flexible so that you can pursue your own interests within the broad field of atmospheric sciences, while meeting the federal government requirements for employment as a meteorologist. If you choose to further your education, your degree also prepares you for graduate school in the atmospheric sciences and related fields.

A bachelor’s degree in meteorology-climatology fulfills the recommended curriculum of the American Meteorological Society (AMS) and the University Corporation for Atmospheric Research (UCAR). The degree program also meets or exceeds the minimum hiring requirements for employment as a meteorologist with the Federal government, thus preparing you for employment with federal agencies such as the National Weather Service, National Aeronautics and Space Administration, Environmental Protection Agency, National Park Service, and military. With this degree, you can also work in private weather consulting; broadcast meteorology; and the agriculture, education, and energy sectors.

The University of Nebraska–Lincoln is a member of UCAR.

Program Assessment. To assist the department in evaluating the effectiveness of its program in meteorology-climatology, each major during their last semester prior to graduation will participate in an exit survey to gather information about the program from the student’s perspective. The undergraduate advisor will inform students of the scheduling and format of the assessment activities. Results of participation in this assessment activity will in no way affect a student’s GPA or graduation.

Admission

College Admission

The entrance requirements for the College of Arts and Sciences are the same as the UNL General Admission Requirements. Students who are admitted through the Admission by Review process may have certain conditions attached to their enrollment at UNL. These conditions are explained under “Removal of Deficiencies.”

In addition to these requirements, the College of Arts and Sciences strongly recommends a third and fourth year of one foreign language in high school. Four years of high school coursework in the same language will fulfill the College of Arts and Sciences’ language requirement. It will also allow students to continue language study at a more advanced level at UNL, and provide more opportunity to study abroad.

Advising

Academic and Career Advising

The Academic and Career Advising Center in 107 Oldfather is a centrally located and easily accessed resource for students in all majors in the College of Arts and Sciences. The professional academic advisors and career coaches offer 1-1 meetings on a walk-in and appointment basis weekdays. Advisors will provide assistance choosing majors and minors, understanding degree requirements and academic policies, completing paperwork, meeting deadlines, adding/dropping courses, and planning for graduation. In addition, career coaches can help students identify career options related to their interests and connect them with experiences like internships, research, and more that will prepare them for those career options. These specially trained advisors and coaches also serve as first point of contact in the College for all incoming freshmen and transfer students during New Student Enrollment.

Students in the College who have declared a major will be assigned an academic advisor who is their first point of contact for a variety of questions. Academic advisors help students be successful in adjusting to UNL overall as well as making progress toward degree completion. The assigned advisor may be located within the department of their primary major, or in the Advising Center. Students can identify their assigned advisor in MyRED on the academics tab. In addition, faculty advisors are experts in their discipline, including advanced coursework and requirements, opportunities for research, student organizations, and considering graduate school in the discipline. Students who have declared a pre-health or pre-law area of interest will also work with advisors in the Exploratory and Pre-Professional Advising Center (Explore Center) in 127 Love Library South, who are specially trained to guide students preparing to enter a professional school.

For complete and current information on advisors for majors, minors, or pre-professional areas, contact the Arts and Sciences Academic and Career Advising Center, 107 Oldfather Hall, 402-472-4190, http://cas.unl.edu/advising.

College Degree Requirements

College Distribution Requirements

Bachelor of Arts or Bachelor of Science (16 hours + Language)

The College of Arts and Sciences distribution requirements are designed to ensure a breadth of courses within the liberal arts degree. By engaging in study in several different areas within the College, students develop the ability to learn in a variety of ways and apply their knowledge from a variety of perspectives. All requirements are in addition to University ACE requirements.

- A student may not use a single course to satisfy both an ACE outcome and a College distribution requirement.
- A student may not use a single course to satisfy more than one College Distribution Requirement.
- A student may not use a course from their primary major to satisfy the Breadth Requirement (F), but may apply an ancillary requirement of the primary major or a course from their second major toward this requirement.
- Independent study, directed readings, or internship courses cannot be used to satisfy a College Distribution Requirement.
- Cross-listed courses from interdisciplinary programs will be applied in the same area as courses from the home/cross-listed department.

College Distribution Requirements

<table>
<thead>
<tr>
<th>CDR A - Written Communication</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select from courses approved for ACE outcome 1.</td>
<td></td>
</tr>
<tr>
<td>CDR B and BL - Natural, Physical, and Mathematical Sciences with Lab</td>
<td>4</td>
</tr>
<tr>
<td>Select from biochemistry, biological sciences, chemistry, computer science, geology, meteorology, mathematics, physics and statistics. Must include one lab in the natural or physical sciences. Lab courses may be selected from biochemistry, biological sciences, chemistry, geology, meteorology and physics.</td>
<td></td>
</tr>
</tbody>
</table>
Some courses from geography and anthropology may also be used to satisfy the lab requirement above.

CDR C - Humanities
Select from classics, English, history, modern languages and literatures, philosophy, and religious studies.

CDR D - Social Science
Select from anthropology, communication studies, geography, political science, psychology, or sociology.

CDR E - Language
Fulfilled by the completion of the 6-credit-hour second-year sequence in a single foreign language in one of the following departments: Classics and religious studies, or modern languages and literatures. Instruction is currently available in Arabic, Chinese, Czech, French, German, Greek, Japanese, Latin, Russian, and Spanish.

A student who has completed the fourth-year level of one foreign language in high school is exempt from the language requirement, but encouraged to continue on in their language study.

CDR F - Additional Breadth
Select from natural, physical and mathematical sciences (Area B), humanities (Area C), or social sciences (Area D).

Credit Hours Subtotal: 16-32

1 See Degree Audit or a College of Arts and Sciences advisor for approved geography and anthropology courses that apply as natural science.
2 Language courses numbered 210 and below do not fulfill the CDR C.
3 See Degree Audit or College of Arts and Sciences advisor for list of natural/physical science courses in anthropology, geography, and psychology that do not apply as social science.

Scientific Base

Bachelor of Science Only (60 hours)
The bachelor of science degree requires students to complete 60 hours in mathematical, physical and natural sciences. Approved courses for scientific base credit come from the following College of Arts and Sciences disciplines: actuarial science, anthropology (selected courses), astronomy, biochemistry (excluding BIOL 101), biological sciences (excluding BIOS 100 or BIOS 203), chemistry (excluding CHEM 101), computer science (excluding CSCE 10), geography (selected courses), geology, life sciences, mathematics (excluding courses below MATH 104), meteorology, microbiology, physics and statistics.

See your degree audit or College of Arts and Sciences advisor for a complete list including individual classes that fall outside of the disciplines listed above. Up to 12 hours of scientific and technical courses offered by other colleges may be accepted toward this requirement with approval of a college advisor.

Language Requirement
UNL and the College of Arts and Sciences place great value on academic exposure and proficiency in a second language. The UNL entrance requirement of two years of the same foreign language or the College’s language distribution requirement (CDR E) will rarely be waived and only with relevant documentation. See the main College of Arts and Sciences page for more details.

Minimum Hours Required for Graduation
A minimum of 120 semester hours of credit is required for graduation from the College of Arts and Sciences. A total grade point average of at least 2.0 is required.

Grade Rules
Restrictions on C- and D Grades
The College will accept no more than 15 semester hours of C- and D grades from other domestic institutions except for UNO and UNK. All courses taken at UNO and UNK impact the UNL transcript. No transfer of C- and D grades can be applied toward requirements in a major or a minor. No UNL C- and D grades can be applied toward requirements in a major or a minor. International coursework (including education abroad) with a final grade equivalent to a C- or lower will not be validated by College of Arts and Sciences departments to be degree applicable.

Pass/No Pass Privilege
The College of Arts and Sciences adheres to the University regulations for the Pass/No Pass (P/N) privilege with the following additional regulations:

• Pass/No Pass hours can count toward fulfillment of University ACE requirements and college distribution requirements up to the 24-hour maximum.
• Most arts and sciences departments and programs do not allow courses graded Pass/No Pass to apply to the major or minor. Students should refer to the department’s or program’s section of the catalog for clarification. By college rule, departments can allow up to 6 hours of Pass/No Pass in the major or minor.
• Departments may specify that certain courses of theirs can be taken only on a P/N basis.
• The college will permit no more than a total of 24 semester hours of P/N grades to be applied toward degree requirements. This total includes all Pass grades earned at UNL and other U.S. schools. NOTE: This 24-hour limit is more restrictive than the University regulation.

Grading Appeals
A student who feels that he/she has been unfairly graded must ordinarily take the following sequential steps in a timely manner, usually by initiating the appeal in the semester following the awarding of the grade:

1. Talk to the instructor concerned. Most problems are resolved at this point.
2. Talk to the instructor’s department chairperson.
3. Take the case to the College Grading Appeals Committee of the department concerned. The Committee should be contacted through the department chairperson.
4. Take the case to the Grading Appeals Committee by contacting the Dean’s Office, 1223 Oldfather Hall.

Course Level Requirements

Courses Numbered at the 300 or 400 Level
Thirty (30) of the 120 semester hours of credit must be in courses numbered at the 300 or 400 level. Of those 30 hours, 15 hours (1/2) must be completed in residence at UNL.

Residency Requirement
Students must complete at least 30 of the 120 total hours for their degree at UNL. Students must complete at least 1/2 of their major coursework including 6 hours at the 300 or 400 level in their major, and 15 of the 30
hours required at the 300 or 400 level in residence. Credit earned during education abroad may be used toward the residency requirement only if students register through UNL.

ACE Requirements
Consistent with the mission and values of the University, ACE is based on a shared set of four institutional objectives and ten student learning outcomes. The ACE program was approved by faculty in all eight undergraduate colleges and endorsed by the Faculty Senate, the student government, and the Academic Planning Committee in January 2008 for implementation in the fall 2009. ACE aligns with current national initiatives in general education.

To meet the ACE Program requirement, a student will complete a minimum of 3 credit hours for each of the ten ACE Student Learning Outcomes (a total of 30 ACE credit hours). See the ACE website at: http://ace.unl.edu for the most current information and the most recently certified courses.

Catalog to Use
Students must fulfill the requirements stated in the catalog for the academic year in which they are first admitted to and enrolled as a degree-seeking student at UNL. In consultation with advisors, a student may choose to follow a subsequent catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at UNL in the College of Arts and Sciences. Students must complete all degree requirements from a single catalog year. Beginning in 1990-1991 the catalog which a student follows for degree requirements may not be more than 10 years old at the time of graduation.

Learning Outcomes
Graduates of meteorology-climatology will be able to:

1. Explain how the atmosphere interacts with other components of the Earth System to exchange matter and energy on short (weather) and long (climate) timescales.
2. Apply mathematical, statistical, and computer programming tools to analyze meteorological data in order to conduct research, make forecasts, and develop conceptual models for the interaction of the atmosphere with other components of the Earth system.
3. Synthesize a broad understanding of the basic processes and system-scale interactions to generate short and long term predictions of the weather and climate.
4. Integrate disciplinary knowledge, technical proficiency, information collection, and data synthesis and analysis to conduct and interpret scientific research.
5. Communicate weather and climate information, research, and events to diverse audiences using multi-media presentations and written scientific reports.

Major Requirements
Core Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>METR 100</td>
<td>Weather and Climate</td>
<td>4</td>
</tr>
<tr>
<td>METR 153</td>
<td>Introduction to Scientific Programming in Atmospheric Science</td>
<td>3</td>
</tr>
<tr>
<td>METR 205</td>
<td>Introduction to Atmospheric Science</td>
<td>4</td>
</tr>
<tr>
<td>METR 223</td>
<td>Atmospheric Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>METR 311</td>
<td>Dynamic Meteorology I</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following Capstone courses: 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>METR 442</td>
<td>Advanced Synoptic Meteorology-Climatology</td>
<td>4</td>
</tr>
<tr>
<td>METR 470</td>
<td>The Climate System: Analysis and Prediction</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>METR 463</td>
<td>Radar Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>METR 464</td>
<td>Satellite Meteorology</td>
<td></td>
</tr>
<tr>
<td>METR 465</td>
<td>Satellite Remote Sensing of Atmosphere</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 36

1. Capstone in either meteorology or climatology respectively. Consult with the faculty advisor.

Specific Major Requirements
Additional Advanced Meteorology Courses

Select 12 hours of 400-level METR courses in consultation with the faculty advisor.

Credit Hours Subtotal: 12

Ancillary Requirements

Mathematics

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 106</td>
<td>Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>MATH 107</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 208</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MATH 221</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>STAT 380</td>
<td>Statistics and Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 19

Physics

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 211</td>
<td>General Physics I</td>
<td>5</td>
</tr>
<tr>
<td>& PHYS 221</td>
<td>and General Physics Laboratory I</td>
<td></td>
</tr>
<tr>
<td>PHYS 212</td>
<td>General Physics II</td>
<td>4</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 9

Chemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 109</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 4

Total Credit Hours: 32

1. A minor in math can be obtained with the completion of the required mathematics and statistics courses.

ADDITIONAL MAJOR REQUIREMENTS

Grade Rules

C- and D Grades
A grade of C or above is required for all courses in the major and minor.

Pass/No Pass
No course taken Pass/No Pass will be counted toward the major or the minor.
Requirements for Minor Offered by Department

Select either the Meteorology or Climatology Emphasis for the minor requirements.

Meteorology Emphasis (22-23 hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>METR 100</td>
<td>Weather and Climate</td>
<td>4</td>
</tr>
<tr>
<td>METR 205</td>
<td>Introduction to Atmospheric Science</td>
<td>4</td>
</tr>
<tr>
<td>METR 311</td>
<td>Dynamic Meteorology I</td>
<td>3</td>
</tr>
<tr>
<td>METR 323</td>
<td>Physical Meteorology</td>
<td>4</td>
</tr>
<tr>
<td>METR 341</td>
<td>Synoptic Meteorology</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following 400-level meteorology courses:</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>METR 415</td>
<td>General Circulation of the Atmosphere</td>
<td></td>
</tr>
<tr>
<td>METR 421</td>
<td>Cloud Physics</td>
<td></td>
</tr>
<tr>
<td>METR 428</td>
<td>Air Pollution</td>
<td></td>
</tr>
<tr>
<td>METR 433</td>
<td>Boundary-layer Meteorology</td>
<td></td>
</tr>
<tr>
<td>METR 442</td>
<td>Advanced Synoptic Meteorology-Climatology</td>
<td></td>
</tr>
<tr>
<td>METR 443</td>
<td>Severe Storms Meteorology-Climatology</td>
<td></td>
</tr>
<tr>
<td>METR 444</td>
<td>Mesoscale Meteorology</td>
<td></td>
</tr>
<tr>
<td>METR 446</td>
<td>Broadcast Meteorology</td>
<td></td>
</tr>
<tr>
<td>METR 454</td>
<td>Statistical Analysis of Atmospheric Data</td>
<td></td>
</tr>
<tr>
<td>METR 463</td>
<td>Radar Meteorology</td>
<td></td>
</tr>
<tr>
<td>METR 464</td>
<td>Satellite Meteorology</td>
<td></td>
</tr>
<tr>
<td>METR 465</td>
<td>Satellite Remote Sensing of Atmosphere</td>
<td></td>
</tr>
<tr>
<td>METR 471</td>
<td>Tropical Meteorology</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 22-23

Climatology Emphasis (20 hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>METR 100</td>
<td>Weather and Climate</td>
<td>4</td>
</tr>
<tr>
<td>METR 205</td>
<td>Introduction to Atmospheric Science</td>
<td>4</td>
</tr>
<tr>
<td>METR 475</td>
<td>Physical Climatology</td>
<td>3</td>
</tr>
<tr>
<td>Select three of the following 400-level climate courses:</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>METR 408</td>
<td>Microclimate: The Biological Environment</td>
<td></td>
</tr>
<tr>
<td>METR 450</td>
<td>Climate and Society</td>
<td></td>
</tr>
<tr>
<td>METR 454</td>
<td>Statistical Analysis of Atmospheric Data</td>
<td></td>
</tr>
<tr>
<td>METR 470</td>
<td>The Climate System: Analysis and Prediction</td>
<td></td>
</tr>
<tr>
<td>METR 478</td>
<td>Regional Climatology</td>
<td></td>
</tr>
<tr>
<td>METR 483</td>
<td>Global Climate Change</td>
<td></td>
</tr>
<tr>
<td>METR 487</td>
<td>Earth's Climate: Past, Present, Future</td>
<td></td>
</tr>
</tbody>
</table>

Total Credit Hours: 20

Grade Rules

C- and D Grades

A grade of C or above is required for all courses in the major and minor.

Pass/No Pass

No course taken Pass/No Pass will be counted toward the major or the minor.

METR 100 Weather and Climate

Prerequisites: MATH 101 or higher; or a qualifying Math Placement Exam score for MATH 102 or 104 or higher

Description: Physical behavior of the atmosphere; elements of weather and climate and their distribution over the earth. Weather map analysis and forecasting. Atmospheric circulation, precipitation processes, severe weather, air pollution, and the use of weather radar. Concepts of weather forecasting.

Credit Hours: 4

Max credits per semester: 4

Max credits per degree: 4

Format: LEC

Prerequisite for: GEOL 372; METR 153; METR 205; METR 270; METR 370, NRES 370; METR 446

ACE: ACE 4 Science

METR 140 Severe and Unusual Weather

Prerequisites: MATH 101 or higher; or a qualifying Math Placement Exam score for MATH 102 or 104 or higher.

Notes: METR 140 will not count toward the major in METR.

Description: Meteorological basics to help understand ice storms, blizzards, tornadoes, hurricanes, flooding, droughts, and other unusual weather.

Credit Hours: 3

Max credits per semester: 3

Max credits per degree: 3

Format: LEC

ACE: ACE 4 Science

METR 153 Introduction to Scientific Programming in Atmospheric Science

Prerequisites: METR 100

Notes: No prior programming experience is required.

Description: Introduction to problem solving with computers using MATLAB. Topics include language syntax, data types, program organization, problem-solving methods, and algorithm design and verification. Basics of problem solving with computers, and the skills necessary to analyze and visualize geophysical data sets.

Credit Hours: 3

Max credits per semester: 3

Max credits per degree: 9

Format: LEC

Offered: SPRING

METR 180 Environment, Energy, and Climate Change

Description: Conceptual process of climate change, environmental quality and earth energy.

Credit Hours: 3

Max credits per semester: 3

Max credits per degree: 3

Format: LEC

ACE: ACE 4 Science

METR 205 Introduction to Atmospheric Science

Prerequisites: MATH 106; METR 100; PHYS 211 or 211H.

Description: Conceptual foundations for synoptic and dynamic meteorology. Meteorological data analysis, the dynamics of atmospheric motions, and atmospheric thermodynamics.

Credit Hours: 4

Max credits per semester: 4

Max credits per degree: 4

Format: LEC

Prerequisite for: METR 223; METR 311; METR 323
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Description</th>
<th>Credit Hours</th>
<th>Max credits per semester</th>
<th>Max credits per degree</th>
<th>Format</th>
<th>Prerequisite for</th>
</tr>
</thead>
<tbody>
<tr>
<td>METR 223</td>
<td>Atmospheric Thermodynamics</td>
<td>CSCE 155N; METR 205; MATH 107 or parallel.</td>
<td>Basic thermodynamic concepts relevant to atmospheric processes, atmospheric stability, and cloud and precipitation micro-physics.</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>LEC</td>
<td>METR 341</td>
</tr>
<tr>
<td>METR 270</td>
<td>Introduction to Climatology</td>
<td>METR 100 or GEOL 101</td>
<td>Introduction to the components of Earth climate system and the dynamic interactions between them. Topics include spatial and temporal variations in Earth climate, and how observations, models, and theory are used to make predictions about the future climate. Explore the impact of human activities on the global climate.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>METR 291</td>
<td>Special Topics in Meteorology</td>
<td>Permission</td>
<td>Topics vary.</td>
<td>1-12</td>
<td>1</td>
<td>12</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>METR 311</td>
<td>Dynamic Meteorology I</td>
<td>CSCE 155N; MATH 208/208H; METR 205; PHYS 211/211H</td>
<td>Equations of thermodynamics, momentum, and continuity are derived and applied to atmospheric motion. Energy conservation, flows, and conversions.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td>METR 312</td>
</tr>
<tr>
<td>METR 312</td>
<td>Dynamic Meteorology II</td>
<td>METR 311; MATH 221/821</td>
<td>Applications of the principles of dynamic meteorology to the problems of forecasting and meteorological problems.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>METR 323</td>
<td>Physical Meteorology</td>
<td>CSCE 155N; METR 205; PHYS 212/212H</td>
<td>Physical principles that provide the foundation for meteorology. Absorption, scattering, and transmission of radiation in the atmosphere, atmospheric optics, atmospheric electricity, and lightning.</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>METR 341</td>
<td>Synoptic Meteorology</td>
<td>METR 223</td>
<td>Dynamic and thermodynamic concepts and principles applied to synoptic-scale weather forecasting. Dynamics, energetics, structure, evolution, and motion of extra-tropical cyclones. Meteorological communications, interpretation and analysis of weather maps, and thermodynamic diagrams.</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>METR 370</td>
<td>Basic and Applied Climatology</td>
<td>METR 100</td>
<td>Processes that give rise to spatial and temporal differences in climate. Various interrelationships between humans and climate. Influence of climate on building styles, the economy, water resources, human health, and society. Humans’ inadvertent and purposeful modification of the atmosphere.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>METR 399</td>
<td>Independent Study</td>
<td>Permission</td>
<td></td>
<td>1-24</td>
<td>1</td>
<td>24</td>
<td>IND</td>
<td></td>
</tr>
<tr>
<td>METR 399H</td>
<td>Honors Course</td>
<td>Permission</td>
<td></td>
<td>1-4</td>
<td>1</td>
<td>4</td>
<td>IND</td>
<td></td>
</tr>
<tr>
<td>METR 408</td>
<td>Microclimate: The Biological Environment</td>
<td>AGRO 408, GEOG 408, HORT 408, NRES 408, WATS 408, AGRO 808, GEOG 808, HORT 808, METR 808, NRES 808</td>
<td>Physical factors that create the biological environment. Radiation and energy balances of earth’s surfaces, terrestrial and marine. Temperature, humidity, and wind regimes near the surface. Control of the physical environment through irrigation, windbreaks, frost protection, manipulation of light, and radiation. Applications to air pollution research. Instruments for measuring environmental conditions and remote sensing of the environment.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td>AGRO 907, HORT 907, METR 907, NRES 907, BSEN 954, NRES 954</td>
</tr>
</tbody>
</table>
METR 415 General Circulation of the Atmosphere
Crosslisted with: METR 815
Prerequisites: Junior standing; METR 475/875; PHYS 211/211H; and PHYS 221.
Description: Development of the atmospheric circulation regimes, from planetary scale (e.g., the planetary waves) to synoptic scale (e.g., the cyclones and anticyclones) and mesoscale, their seasonal variations, and their roles in horizontal vertical energy and water transport and budgets in the Earth system.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

METR 421 Cloud Physics
Crosslisted with: METR 821
Prerequisites: METR 223 and METR 323 or equivalent
Description: Buoyancy and parcel mixing, cloud physics instrumentation, the role of aerosols in precipitation processes, growth of liquid cloud droplets/raindrops/ice crystals, processes associated with falling precipitation particles, drop size distributions and their moments, applications to convection, and parameterizations of cloud microphysical processes for numerical modeling applications.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

METR 428 Air Pollution
Crosslisted with: METR 828
Prerequisites: 6 hrs METR; CHEM 109
Description: Basic processes (e.g., emission, transport, first-order chemical reaction, and deposition) associated with air pollution and their combination with meteorology for air quality forecasting. Environmental topics: acid rain; smog; air pollution; ozone hole; greenhouse gases; aerosols; long-range transport; civic regulations and international treaties on air pollution; and climate change.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

METR 433 Boundary-layer Meteorology
Crosslisted with: METR 833
Prerequisites: METR 223 and MATH 208/208H
Description: Basic concepts of atmospheric turbulence and fundamental dynamics, thermodynamics, and structure of the atmospheric boundary layer are discussed. Atmospheric boundary layer parameterizations used in modern weather and climate models are presented.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: METR 933

METR 442 Advanced Synoptic Meteorology-Climatology
Crosslisted with: METR 842
Prerequisites: METR 341.
Description: Analysis and forecasting of subsynoptic-scale weather systems. Convection, thunderstorm models, severe local storm forecasting techniques, mesoscale convective complexes, vertical cross-sections, isentropic analysis, and weather radar.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: METR 944
ACE: ACE 10 Integrated Product

METR 443 Severe Storms Meteorology-Climatology
Crosslisted with: METR 843
Prerequisites: METR 311, METR 341 or parallel
Description: Dynamics of various types of severe weather (blizzards, flash floods, lightning, thunderstorms and winter and summer tornado outbreaks). Interpretation of the numerical and statistical models utilized to forecast these phenomena. Synoptic case studies of severe weather occurrences. Recent research on severe weather.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

METR 444 Mesoscale Meteorology
Crosslisted with: METR 844
Prerequisites: METR 311
Description: Dynamics and conceptual models of mesoscale meteorological phenomena and processes.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

METR 446 Broadcast Meteorology
Prerequisites: METR 100
Notes: Only 3 hours of credit from METR 446 or METR 447 may be applied to the major and/or minor in Meteorology through Group B requirements.
Description: Information about the history and current status of broadcast meteorology and related technology. Procedures and requirements to obtain Professional Society certification/seal in Broadcast Meteorology. Address on air requirements mandated by the Federal FCC rules and regulations and social impacts of broadcast meteorology. Opportunity to gain experience in presenting weather information through various media outlets, including the use of chromakey technology and social media.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
METR 447 Broadcast Meteorology Practicum
Prerequisites: Permission.
Notes: Only 3 hours of credit from METR 446 or METR 447 may be applied to the major and/or minor in Meteorology through Group B requirements.
Description: Produce weather presentations worthy of airing live during Star City News. Learn how to develop weather presentations for production, including development of graphics, lead ins and promos. One-on-one critiquing/coaching to improve the presentation and content of the presentation will also take place throughout the semester.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

METR 450 Climate and Society
Crosslisted with: AGRO 450, GEOG 450, NRES 452, AGRO 850, GEOG 850, METR 850, NRES 852
Prerequisites: Junior standing or above.
Notes: Offered spring semester of even-numbered calendar years.
Description: Impact of climate and extreme climatic events on society and societal responses to those events. Global in scope and interdisciplinary.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: SPRING
Groups: Physical Geography

METR 454 Statistical Analysis of Atmospheric Data
Crosslisted with: METR 854
Prerequisites: 6 hrs METR and MATH 107/107H.
Description: Application of univariate statistics, hypothesis testing, statistical forecasting, forecast verification, time-series analysis, principal component analysis, and cluster/multivariate analysis to atmospheric data for different applications in the atmospheric sciences (from short-term weather forecast to long-term climate prediction).
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

METR 463 Radar Meteorology
Crosslisted with: METR 863
Prerequisites: METR 323.
Description: The fundamental principles of weather radars and the basic application of these principles.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

METR 464 Satellite Meteorology
Crosslisted with: METR 864
Prerequisites: METR 223
Description: Concepts and principles related to meteorological observations from satellites. Applications for weather analysis and forecasting.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

METR 465 Satellite Remote Sensing of Atmosphere
Crosslisted with: METR 865
Prerequisites: METR 323
Description: Principles of atmospheric radiation and techniques for satellite image processing. Application of data calibration, image registration and enhancement, noise filtering and multi-spectral classification of satellite images. Survey of various satellite sensors used for monitoring different atmospheric processes and constituents.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

METR 469 Bio-Atmospheric Instrumentation
Crosslisted with: AGRO 469, GEOG 469, HORT 407, MSYM 469, AGRO 869, GEOG 869, HORT 807, METR 869, MSYM 869, NRES 869
Prerequisites: Junior standing; MATH 106; 4 hrs physics; physical or biological science major.
Description: Discussion and practical application of principles and practices of measuring meteorological and related variables near the earth's surface including temperature, humidity, precipitation, pressure, radiation and wind. Performance characteristics of sensors and modern data collection methods are discussed and evaluated.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Groups: Physical Geography

METR 470 The Climate System: Analysis and Prediction
Crosslisted with: METR 870
Description: Maintenance of the climate system and climate change over time. Global budgets of energy, water, and momentum and their balance. Development of simple, physically-based models of climate and of climate change.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
ACE: ACE 10 Integrated Product

METR 471 Tropical Meteorology
Crosslisted with: METR 871
Prerequisites: METR 223 and METR 311
Description: Atmospheric phenomena unique to the tropics, and their connection to the global circulation.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
METR 475 Physical Climatology
Crosslisted with: METR 875
Prerequisites: METR 205.
Description: Global energy and water balance regimes of the earth and its atmosphere. Utilization of physical laws to reveal causes and effects of interrelationships in the climatic system.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: METR 415, METR 815; METR 483, METR 883, NRES 467, NRES 867

METR 478 Regional Climatology
Crosslisted with: METR 878, NRES 478, NRES 878
Prerequisites: NRES/METR 370.
Description: Regional differentiation of the climates of the earth on both a descriptive and dynamic basis. The chief systems of climatic classification.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

METR 479 Hydroclimatology
Crosslisted with: NRES 479, WATS 479, BSEN 479, NRES 879, METR 879, BSEN 879
Prerequisites: NRES 208 or METR 100 or METR/NRES 370.
Notes: Offered spring semester of even-numbered calendar years.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

METR 483 Global Climate Change
Crosslisted with: METR 883, NRES 467, NRES 867
Prerequisites: Junior standing; and METR 475/875.
Notes: Offered fall semester of even-numbered calendar years.
Description: Elements of climate systems, El Nino/LaNina cycle and monsoons, natural variability of climate on interannual and interdecadal scales. Paleoclimate, and future climate, developed climate change scenarios and climate change impacts on natural resources and the environment.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

METR 487 Earth’s Climate: Past, Present, Future
Crosslisted with: METR 887
Prerequisites: 6 hrs METR or 6 hrs GEOL.
Description: How the Earth’s climate has varied and the forcing mechanisms related to those changes. Themes that reappear through Earth’s climate history and into the future; causes of climate change; the natural response times of the multiple components; and the role of greenhouse gases within the climate system at differing time scales.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

METR 495 Internship in Meteorology-Climatology
Crosslisted with: METR 895
Prerequisites: Permission.
Description: Application of meteorology-climatology learning with on-the-job training.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Format: LEC

METR 498 Special Topics in Meteorology-Climatology
Crosslisted with: METR 898
Prerequisites: Permission.
Credit Hours: 1-24
Min credits per semester: 1
Max credits per semester: 24
Max credits per degree: 24
Format: LEC

METR 499 Independent Study
Prerequisites: Permission.
Credit Hours: 1-24
Min credits per semester: 1
Max credits per semester: 24
Max credits per degree: 24
Format: IND

METR 499H Honors Course
Prerequisites: Permission.
Credit Hours: 1-4
Min credits per semester: 1
Max credits per semester: 4
Max credits per degree: 4
Format: IND

Please note
This document represents a sample 4-year plan for degree completion with this major. Actual course selection and sequence may vary and should be discussed individually with your college or department academic advisor. Advisors also can help you plan other experiences to enrich your undergraduate education such as internships, education abroad, undergraduate research, learning communities, and service learning and community-based learning.

Meteorology-Climatology (B.S.)
Career Information
The following represents a sample of the internships, jobs and graduate school programs that current students and recent graduates have reported.

Transferable Skills
- Analyze and explain data
- Use quantitative analysis techniques
- Use qualitative analysis techniques
- Define problems and identifying causes
- Apply mathematical and scientific skills to solve real-world problems
- Make predictions using mathematical, statistical, and scientific modeling methods
- Make decisions carefully, using appropriate theoretical frameworks
- Simplify complex information and present it to others
• Communicate results of scientific experiments to scientific and non-scientific audiences
• Read, understand, and critically review scientific information
• Support and communicate claims using clear evidence
• Listen actively and facilitate individual and group communication
• Collaborate with a team to develop solutions
• Communicate clearly using different forms of writing to and for a variety of different audiences
• Coordinate people, activities, and event details

Jobs of Recent Graduates
• Meteorologist, Nebraska Department of Roads - Lincoln NE
• Software Engineer, Contract Northup Group - Bellevue NE
• Meteorologist, Weather or Not - Shawnee KS
• Research Associate, High Plains Regional Climate Center - Lincoln NE
• Meteorologist, Hoak Media - Grand Junction CO
• Coding Specialist, National Research Corporation - Lincoln NE
• Meteorologist, KETV Hearst Television - Omaha NE
• Systems Engineer, MITRE Corporation - McLean VA
• Meteorologist, National Weather Service - Silver Spring MD
• Teaching Assistant, University of Georgia - Athens GA
• Extension Educator, University of Nebraska-Lincoln - Phelps and Gosper Counties
• Underwriting Assistant, National Indemnity - Omaha NE
• Naval Student Pilot, U.S. Navy - Pensacola FL

Internships
• Weather Intern, Channel 8 - Lincoln NE
• Research Technician, Planetary Data, Inc. - Prague NE
• Research Assistant, UNL Earth and Atmospheric Sciences - Lincoln NE
• Architectural Engineering Intern, Ezenics, Inc. - Omaha NE
• Intern, MMC Contractors - Omaha NE

Graduate & Professional Schools
• Master's Degree, Earth & Atmospheric Science - Meteorology-Climatology specialization, University of Nebraska-Lincoln - Lincoln NE
• Ph.D., Earth & Atmospheric Science - Meteorology/Climatology, University of Nebraska-Lincoln - Lincoln NE