MATHEMATICS

Description
A strong mathematics background is essential to an increasing variety of careers. The Department of Mathematics encourages students to select a coherent body of courses in mathematics and in other disciplines that are consistent with their academic and career goals.

Options in the Major
Students in the Standard option may take a diverse set of Mathematics courses paired with another major or minor. Additional options are available for students who would like to focus their advanced coursework in ways that meet their specific interests and career goals. All students complete a core set of requirements and can determine, in consultation with faculty and their academic advisor, which specific option to follow. The option will be documented on the final transcript.

Standard Option
Recommended for students wishing to combine a strong mathematics education with research or a coherent body of coursework in another discipline.

Education Option
Recommended for students planning to pursue endorsement and certification to teach mathematics at the secondary level through an undergraduate degree in the College of Education and Human Sciences or through a graduate program.

Statistics and Data Science
Recommended for students interested in a mathematics major and a strong body of coursework in statistics.

Mathematics of Physical Phenomena Option
Recommended for students interested in pairing a strong mathematics education with a body of coursework concerning the physical world that we live in.

Mathematical Biology Option
Recommended for students interested in a mathematics major and a strong body of coursework concerning biology and the mathematics of biological science.

Mathematical Finance Option
Recommended for students interested in a mathematics major and a strong body of coursework in actuarial science and finance.

Discrete Mathematics and Cryptography Option
Recommended for students wishing to combine a strong mathematics education with a coherent body of coursework in computer science focused on discrete mathematics and cryptography.

Program Assessment. In order to assist the department in evaluating its programs, all majors should plan to participate in an exit interview during their last semester before graduation. Please make arrangements with the faculty advisor.

College Admission
The entrance requirements for the College of Arts and Sciences (CAS), including any of the majors or minors offered through the college, are the same as the University of Nebraska–Lincoln General Admission Requirements. In addition to these requirements, the College of Arts and Sciences strongly recommends a third and fourth year of one foreign language in high school. Four years of high school coursework in the same language will fulfill the College of Arts and Sciences’ language requirement. It will also allow students to continue language study at a more advanced level at the University of Nebraska–Lincoln and provide more opportunity to study abroad.

ACADEMIC AND CAREER Advising
Academic and Career Advising Center
The Academic and Career Advising Center in 107 Oldfather Hall is the undergraduate hub for CAS students in all majors. Centrally located and easily accessed, students encounter friendly, knowledgeable people who are eager to help. Students visit the Advising Center in 107 Oldfather Hall to:

- Choose or change their major, minor, or degree program.
- Check in on policies, procedures, and deadlines.
- Get a college approval signature from the Dean’s representative, Sr. Director of Advising and Student Success.

While the assigned academic advisor should be the student’s primary contact, there are daily walk-ins from 12-3 where a general academic advisor can answer a quick question. In addition, the CAS Career Coaches are located here. They help students explore majors and minors, gain experience, and develop a plan for life after graduation. Not sure where to go or who to ask? The Advising Center team can help.

Assigned Academic Advisors
Academic advisors are critical resources dedicated to students' academic, personal, and professional success. Every CAS student is assigned an academic advisor based on their primary major. Since most CAS students have more than just a single major, it is important to get to know the advisor for any minors or additional majors. Academic advisors work closely with the faculty to provide the best overall support and discipline-specific expertise.

Assigned advisors are listed in MyRED (https://its.unl.edu/myunl/) and their offices may be located in or near the department of the major for which they advise or in the Academic and Career Advising Center. Students who have declared a pre-health or pre-law area of interest will also work with advisors in the Exploratory and Pre-Professional Advising Center (Explore Center) in 127 Love South, who are specially trained to guide students preparing to enter a professional school.

For complete and current information on advisors for majors, minors, or pre-professional areas, contact the Arts and Sciences Academic and Career Advising Center, 107 Oldfather Hall, 402-472-4190, http://cas.unl.edu/advising (http://cas.unl.edu/advising/).

Career Coaching
The College believes that Academics + Experience = Opportunities and encourages students to complement their academic preparation with real-world experience, including internships, research, education abroad, service, and leadership. Arts and sciences students have access to a powerful network of faculty, staff, and advisors dedicated to providing information and support for their goals of meaningful employment or advanced education. Arts and sciences graduates have unlimited career possibilities and carry with them important career competencies—communication, critical thinking, creativity, context, and collaboration. They have the skills and adaptability that employers universally value. Graduates are not only prepared to effectively contribute professionally in
the real world, but they have a solid foundation to excel in an increasingly global, technological, and interdisciplinary world.

Students should contact the career coaches in the Arts and Sciences Academic and Career Advising Center in 107 Oldfather, or their assigned advisor, for more information. The CAS career coaches help students explore career options, identify ways to build experience, and prepare to apply for internships, jobs, or graduate school, including help with resumes, applications, and interviewing.

ACE Requirements

Students must complete one course for each of the ACE Student Learning Outcomes below. Certified course choices are published in the degree audit, or visit the ACE website (http://ace.unl.edu) for the most current list of certified courses.

ACE Student Learning Outcomes

- ACE 1: Write texts, in various forms, with an identified purpose, that respond to specific audience needs, integrate research or existing knowledge, and use applicable documentation and appropriate conventions of format and structure.
- ACE 2: Demonstrate competence in communication skills.
- ACE 3: Use mathematical, computational, statistical, logical, or other formal reasoning to solve problems, draw inferences, justify conclusions, and determine reasonableness.
- ACE 4: Use scientific methods and knowledge to pose questions, frame hypotheses, interpret data, and evaluate conclusions about the natural and physical world are reasonable.
- ACE 5: Use knowledge, historical perspectives, analysis, interpretation, critical evaluation, and the standards of evidence appropriate to the humanities to address problems and issues.
- ACE 6: Use knowledge, theories, and research perspectives such as statistical methods or observational accounts appropriate to the social sciences to understand and evaluate social systems or human behaviors.
- ACE 7: Use knowledge, theories, or methods appropriate to the arts to understand their context and significance.
- ACE 8: Use knowledge, theories, and analysis to explain ethical principles and their importance in society.
- ACE 9: Exhibit global awareness or knowledge of human diversity through analysis of an issue.
- ACE 10: Generate a creative or scholarly product that requires broad knowledge, appropriate technical proficiency, information collection, synthesis, interpretation, presentation, and reflection.

College Degree Requirements

College Distribution Requirements – BA and BS

The College of Arts and Sciences distribution requirements are common to both the bachelor of arts and bachelor of science degrees and are designed to ensure a range of courses. By engaging in study in several different areas within the College, students develop the ability to learn in a variety of ways and apply their knowledge from a variety of perspectives. All requirements are in addition to University ACE requirements, and no course can be used to fulfill both an ACE outcome and a College Distribution Requirement.

- A student may not use a single course to satisfy more than one College Distribution Requirement, with the exception of CDR Diversity. Courses used to meet CDR Diversity may also meet CDR Writing, CDR Humanities, or CDR Social Science.
- Independent study or reading courses and internships cannot be used to satisfy distribution requirements.
- Courses from interdisciplinary programs will be applied in the same area as courses from the home/cross-listed department.

College Distribution Requirements

<table>
<thead>
<tr>
<th>CDR: Written Communication</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDR: Natural, Physical, and Mathematical Sciences with Lab</td>
<td>4</td>
</tr>
<tr>
<td>CDR: Humanities</td>
<td>3</td>
</tr>
<tr>
<td>CDR: Social Science</td>
<td>3</td>
</tr>
<tr>
<td>CDR: Human Diversity in U.S. Communities</td>
<td>0-3</td>
</tr>
</tbody>
</table>

A student who has completed the fourth-year level of one foreign language in high school is exempt from the languages requirement, but encouraged to continue on in their language study.

Credit Hours Subtotal: 13-32

1. See Degree Audit or a College of Arts and Sciences advisor for approved geography and anthropology courses that apply as natural science.
2. Language courses numbered 220 and below do not fulfill the CDR Humanities.
3. See Degree Audit or College of Arts and Sciences advisor for list of natural/physical science courses in anthropology, geography, and psychology that do not apply as social science.

Language Requirement

The University of Nebraska–Lincoln and the College of Arts and Sciences place great value on academic exposure and proficiency in a second language. The University of Nebraska–Lincoln entrance requirement of two years of the same foreign language or the College’s language...
distribution requirement (CDR: Language) will rarely be waived and only
with relevant documentation. See the main College of Arts and Sciences
page for more details.

Scientific Base - BS Only
The bachelor of science degree requires students to complete 60 hours
in mathematical, physical, and natural sciences. Approved courses
for scientific base credit come from the following College of Arts
and Sciences disciplines: actuarial science, anthropology (selected
courses), astronomy, biochemistry (excluding BIOL 101), biological
sciences (excluding BIOS 100 or BIOS 203), chemistry (excluding
CHEM 101), computer science (excluding CSCE 10), geography (selected
courses), geology, life sciences, mathematics (excluding courses below
MATH 104), meteorology, microbiology (excluding MBIO 101), and
physics.

See your Degree Audit or your assigned academic advisor for a complete
list, including individual classes that fall outside of the disciplines listed
above. Up to 12 hours of scientific and technical courses offered by other
colleges may be accepted toward this requirement with the approval of
the College of Arts and Sciences. See your assigned academic advisor to
start the approval process.

Minimum Hours Required for Graduation
A minimum of 120 semester hours of credit is required for graduation
from the College of Arts and Sciences. A cumulative grade point average
of at least 2.0 is required.

Grade Rules
Restrictions on C- and D Grades
The College will accept no more than 15 semester hours of C- and D
grades from other domestic institutions except for UNO and UNK. All
courses taken at UNO and UNK impact the UNL transcript. No transfer
of C- and D grades can be applied toward requirements in a major or a
minor. No University of Nebraska–Lincoln C- and D grades can be applied
toward requirements in a major or a minor. International coursework
(including education abroad) with a final grade equivalent to a C- or lower
will not be validated by the College of Arts and Sciences departments to
be degree applicable.

Pass/No Pass Privilege
The College of Arts and Sciences adheres to the University regulations
for the Pass/No Pass (P/N) privilege with the following additional
regulations:

- Pass/No Pass hours can count toward fulfillment of University ACE
 requirements and college distribution requirements up to the 24-hour
 maximum.
- Most arts and sciences departments and programs do not allow
courses graded Pass/No Pass to apply to the major or minor.
 Students should refer to the department's or program's section of the
catalog for clarification. By college rule, departments can allow up to
6 hours of Pass/No Pass in the major or minor.
- Departments may specify that certain courses of theirs can be taken
 only on a P/N basis.
- The College will permit no more than a total of 24 semester hours
 of P/N grades to be applied toward degree requirements. This total
 includes all Pass grades earned at the University of Nebraska–
 Lincoln and other U.S. schools. **NOTE:** This 24-hour limit is more
 restrictive than the University regulation.

Grading Appeals
A student who feels that he/she has been unfairly graded must ordinarily
take the following sequential steps in a timely manner, usually by
initiating the appeal in the semester following the awarding of the grade:

1. Talk with the instructor concerned. Most problems are resolved at
 this point.
2. Talk to the instructor's department chairperson.
3. Take the case to the Grading Appeal Committee of the department
 concerned. The Committee should be contacted through the
department chairperson.
4. Take the case to the College Grading Appeals Committee by
 contacting the Dean's Office, 1223 Oldfather Hall.

Course Level Requirements
Courses Numbered at the 300 or 400 Level
Thirty (30) of the 120 semester hours of credit must be in courses
numbered at the 300 or 400 level. Of those 30 hours, 15 hours (1/2) must
be completed in residence at the University of Nebraska–Lincoln.

Residency Requirement
Students must complete at least 30 of the 120 total hours for their degree
at the University of Nebraska–Lincoln. Students must complete at least
1/2 of their major coursework, including 6 hours at the 300 or 400 level
in their major and 15 of the 30 hours required at the 300 or 400 level, in
residence. Credit earned during education abroad may be used toward
the residency requirement only if students register through the University
of Nebraska–Lincoln.

Catalog to Use
Students must fulfill the requirements stated in the catalog for the
academic year in which they are first admitted to and enrolled as a
degree-seeking student at the University of Nebraska–Lincoln. In
consultation with advisors, a student may choose to follow a subsequent
catalog for any academic year in which they are admitted to and enrolled
as a degree-seeking student at the University of Nebraska–Lincoln in
the College of Arts and Sciences. Students must complete all degree
requirements from a single catalog year. Beginning in 1990-1991, the
catalog which a student follows for degree requirements may not be more
than 10 years old at the time of graduation.

Learning Outcomes
Graduates of mathematics will be able to:

1. Reason quantitatively using numeric, algebraic, and analytic
 methods.
2. Use mathematics to model and address real-world problems.
3. Understand, create, and explain mathematical arguments organized
 by means of definitions, results, proofs, and examples.

Major Requirements
Complete the core requirements and the requirements of one option.

Core Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 106</td>
<td>Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>MATH 107</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 314</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 12
Option Courses
Select and complete the specific requirements for one of seven options described below to complete the major.

<table>
<thead>
<tr>
<th>Credit Hours Subtotal:</th>
<th>30-43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Credit Hours</td>
<td>42-55</td>
</tr>
</tbody>
</table>

Standard Option

Required Courses
- MATH 208 Calculus III 4
- MATH 221 Differential Equations 3
 - or STAT 380 Statistics and Applications 3
- MATH 310 Introduction to Modern Algebra 3
- MATH 325 Elementary Analysis 3

| Credit Hours Subtotal: | 13 |

Additional MATH Courses
Select four additional advanced MATH courses with at least two at the 400 level.

| Credit Hours Subtotal: | 12 |

Minor, 2nd Major, or Research Experience
Students pursuing the Standard Option should accompany the math major with a minor, 2nd major, or approved 18-hour concentration in another area. An approved significant research experience including thesis, UCARE, or REU may be used.

| Credit Hours Subtotal: | 18 |

Education Option

Required Courses
- MATH 208 Calculus III 4
- MATH 310 Introduction to Modern Algebra 3
- MATH 325 Elementary Analysis 3
- MATH 350 Geometry for High School Teaching 3
- MATH 405 Discrete and Finite Mathematics for High School Teaching 3
- MATH 407 Mathematics for High School Teaching I 3
- MATH 408 Mathematics for High School Teaching II 3
- STAT 380 Statistics and Applications 3

| Credit Hours Subtotal: | 25 |

An education major or minor
Students pursuing the Education Option should accompany the math major with a 2nd major in education, likely through dual matriculation or intercollege study with the College of Education and Human Sciences. An education minor or approved 18-hour concentration related to education may also be used to meet this requirement.

| Credit Hours Subtotal: | 18 |

Statistics and Data Science

Required Courses
- MATH 208 Calculus III 4

<table>
<thead>
<tr>
<th>MATH 309</th>
<th>Introduction to Mathematical Proofs</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 310</td>
<td>Introduction to Modern Algebra</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 325</td>
<td>Elementary Analysis</td>
<td>---</td>
</tr>
<tr>
<td>STAT 380</td>
<td>Statistics and Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

| Credit Hours Subtotal: | 13 |

Additional Mathematics Courses
Select one of the following MATH courses:

<table>
<thead>
<tr>
<th>MATH 428</th>
<th>Principles of Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 433</td>
<td>Nonlinear Optimization</td>
</tr>
<tr>
<td>MATH 440</td>
<td>Numerical Analysis I</td>
</tr>
<tr>
<td>MATH 487</td>
<td>Probability Theory</td>
</tr>
<tr>
<td>MATH 489</td>
<td>Stochastic Processes</td>
</tr>
</tbody>
</table>

Select one additional advanced MATH course at the 400 level.

| Credit Hours Subtotal: | 6 |

Additional Statistics Courses
Select two additional STAT courses at the 300 or 400 level.

| Credit Hours Subtotal: | 6 |

Computer Science Courses

<table>
<thead>
<tr>
<th>CSCE 155T</th>
<th>Computer Science I: Informatics Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>or CSCE 155A</td>
<td>Computer Science I</td>
</tr>
<tr>
<td>or CSCE 155E</td>
<td>Computer Science I: Systems Engineering Focus</td>
</tr>
<tr>
<td>or CSCE 155H</td>
<td>Honors: Computer Science I</td>
</tr>
<tr>
<td>or CSCE 155N</td>
<td>Computer Science I: Engineering and Science Focus</td>
</tr>
<tr>
<td>or CSCE 183H / Honors: Computer Problem Solving Essentials</td>
<td></td>
</tr>
<tr>
<td>RAIK 183H</td>
<td></td>
</tr>
<tr>
<td>CSCE 311</td>
<td>Data Structures and Algorithms for Informatics</td>
</tr>
<tr>
<td>or CSCE 310</td>
<td>Data Structures and Algorithms</td>
</tr>
<tr>
<td>or SOFT 260H / Honors: Software Engineering III</td>
<td></td>
</tr>
<tr>
<td>RAIK 283H</td>
<td></td>
</tr>
</tbody>
</table>

Select two courses from one of the following sets of courses:

Set 1
- CSCE 421 Foundations of Constraint Processing
- CSCE 439 Robotics: Algorithms and Applications
- CSCE 370H / RAIK 370H Honors: Data and Models II: Data Science Fundamentals
- CSCE 474 Introduction to Data Mining
- CSCE 476 Introduction to Artificial Intelligence
- CSCE 478 Introduction to Machine Learning
- CSCE 479 Introduction to Deep Learning

| Credit Hours Subtotal: | 6 |

Set 2
- CSCE 411 Data Modeling for Systems Development
- CSCE 412 Data Visualization
- CSCE 413 Database Systems
- CSCE 439 Robotics: Algorithms and Applications
- CSCE 472 Digital Image Processing
- CSCE 473 Computer Vision
- CSCE 474 Introduction to Data Mining

| Credit Hours Subtotal: | 12 |

| Total Credit Hours | 37 |
Mathematics of Physical Phenomena Option

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 208</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MATH 221</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 309</td>
<td>Introduction to Mathematical Proofs</td>
<td>3</td>
</tr>
<tr>
<td>MATH 325</td>
<td>Elementary Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 13

Additional Mathematics Courses

Select two additional advanced MATH courses at the 400 level.

Credit Hours Subtotal: 6

Physics Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 211</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 212</td>
<td>General Physics II</td>
<td>4</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 8

Physical Phenomena Sequence

Select and complete one of the following sequences from physics, meteorology, geology, or engineering:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 215</td>
<td>Electronics and Circuits I</td>
<td>3</td>
</tr>
<tr>
<td>& ECEN 216 & Electronics and Circuits II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& ECEN 304 & Signals and Systems I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& ECEN 462 & Communication Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECEN 215</td>
<td>Electronics and Circuits I</td>
<td>3</td>
</tr>
<tr>
<td>& ECEN 216 & Electronics and Circuits II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& ECEN 304 & Signals and Systems I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& ECEN 463 & Digital Signal Processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECEN 215</td>
<td>Electronics and Circuits I</td>
<td>3</td>
</tr>
<tr>
<td>& ECEN 306 & Electromagnetic Field Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& ECEN 408 & Engineering Electromagnetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECEN 215</td>
<td>Electronics and Circuits I</td>
<td>3</td>
</tr>
<tr>
<td>& ECEN 306 & Electromagnetic Field Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& ECEN 467 & Electromagnetic Theory and Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL 101</td>
<td>Dynamic Earth</td>
<td>3</td>
</tr>
<tr>
<td>& GEOL 441 & Geophysics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& GEOL 372 & Water & Earth Connections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL 106</td>
<td>Environmental Geology</td>
<td>3</td>
</tr>
<tr>
<td>& GEOL 441 & Geophysics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& GEOL 372 & Water & Earth Connections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 223</td>
<td>Engineering Statics</td>
<td>3</td>
</tr>
<tr>
<td>& MECH 310 & Fluid Mechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& MECH 373 & Engineering Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 223</td>
<td>Engineering Statics</td>
<td>3</td>
</tr>
<tr>
<td>& MECH 325 & Mechanics of Elastic Bodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& MECH 451 & and Introduction to Finite Element Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 223</td>
<td>Engineering Statics</td>
<td>3</td>
</tr>
<tr>
<td>& MECH 350 & and Introduction to Dynamics Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& MECH 373 & of Engineering Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& MECH 373 & and Engineering Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 223</td>
<td>Engineering Statics</td>
<td>3</td>
</tr>
<tr>
<td>& MECH 373 & and Engineering Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& MECH 449 & and Advanced Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 223</td>
<td>Engineering Statics</td>
<td>3</td>
</tr>
<tr>
<td>& MECH 373 & and Engineering Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& MECH 451 & and Introduction to Finite Element Analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 6-16

Total Credit Hours: 33-43

Mathematical Biology Option

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 309</td>
<td>Introduction to Mathematical Proofs</td>
<td>3</td>
</tr>
<tr>
<td>MATH 325</td>
<td>Elementary Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 439</td>
<td>Mathematical Biology</td>
<td>3</td>
</tr>
<tr>
<td>STAT 380</td>
<td>Statistics and Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 15

Additional Mathematics Courses

Select two additional advanced MATH courses at the 400 level.

Credit Hours Subtotal: 6

Biological Sciences Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFE 120</td>
<td>Fundamentals of Biology I</td>
<td>4</td>
</tr>
<tr>
<td>& LIFE 120L & Fundamentals of Biology I laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFE 121</td>
<td>Fundamentals of Biology II</td>
<td>4</td>
</tr>
<tr>
<td>& LIFE 121L & Fundamentals of Biology II Laboratory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following sequences:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 206</td>
<td>General Genetics</td>
<td>3</td>
</tr>
<tr>
<td>& BIOS 337 & Applications of Bioinformatics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 206</td>
<td>General Genetics</td>
<td>3</td>
</tr>
<tr>
<td>& BIOS 426 & Systems Biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 206</td>
<td>General Genetics</td>
<td>3</td>
</tr>
<tr>
<td>& BIOS 427 & Practical Bioinformatics Laboratory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BIOS 207 & BIOS 452
Ecology and Evolution and Field Epidemiology

BIOS 207 & BIOS 453
Ecology and Evolution and Predator Ecology

Credit Hours Subtotal: 15-16

Total Credit Hours 36-37

Mathematical Finance Option

Required Courses
MATH 208 Calculus III 4
MATH 221 Differential Equations 3
STAT 380 Statistics and Applications 3

Credit Hours Subtotal: 10

Additional Mathematics and Statistics Courses
Select two courses from the following: 6
MATH 309 Introduction to Mathematical Proofs
MATH 310 Introduction to Modern Algebra
MATH 325 Elementary Analysis
MATH 487 Probability Theory
or STAT 462 Introduction to Mathematical Statistics I: Distribution Theory
MATH 489 Stochastic Processes

Select one additional advanced MATH courses at the 400 level. 3

Credit Hours Subtotal: 9

Actuarial Science or Finance Courses
ACTS 440 Interest Theory 4
ACTS 441 Introduction to Financial Economics 3
FINA 467A Options, Futures and Derivative Securities for Actuarial Science 3

Credit Hours Subtotal: 10

Total Credit Hours 29

Discrete Mathematics and Cryptography Option

Required Courses
MATH 208 Calculus III or MATH 221 Differential Equations or MATH 309 Introduction to Mathematical Proofs or MATH 310 Introduction to Modern Algebra 3-4
MATH 380 Statistics and Applications 3
MATH 390 Introduction to Mathematical Proofs 3
MATH 400 Introduction to Modern Algebra 3

Credit Hours Subtotal: 9-10

Additional Mathematics Courses
Select one course from the following: 3
MATH 417 Group Theory
MATH 428 Principles of Operations Research
MATH 445 Number Theory
MATH 450 Combinatorics
MATH 452 Graph Theory

Select two additional advanced MATH courses at the 400 level. 6

Credit Hours Subtotal: 9

Computer Science Courses
CSCE 155T Computer Science I: Informatics Focus or CSCE 155E Computer Science I: Systems Engineering Focus 3

or CSCE 155H Honors: Computer Science I
or CSCE 155N Computer Science I: Engineering and Science Focus
or CSCE 183H / Honors: Computer Problem Solving Essentials
RAIK 183H
CSCE 311 Data Structures and Algorithms for Informatics 3
or CSCE 310 Data Structures and Algorithms or SOFT 260H / Honors: Software Engineering III RAIK 283H

Select two courses from the following: 6
CSCE 423 Design and Analysis of Algorithms
CSCE 424 Computational Complexity Theory
CSCE 428 Automata, Computation, and Formal Languages
CSCE 463 Data and Network Security
CSCE 477 Cryptography and Computer Security

Credit Hours Subtotal: 12

Total Credit Hours 30-31

Additional Major Requirements

Grade Rules
C- and D Grades
A grade of C or higher is required in all courses in the major or minor.

Pass/No Pass
No calculus course taken Pass/No Pass will count toward the major or minor. No more than 3 hours of the advanced courses taken as Pass/No Pass will be counted toward the major or minor.

Prerequisite Requirements/Rules
Math majors who earn less than a grade of C or P in a major course must retake that course before moving on to any other course for which it is a prerequisite.

Restrictions
Students with previous credit in any calculus course (that is, MATH 104 or MATH 106, MATH 107, or MATH 208 or their honors versions) may not register for or earn credit toward their degree with any math course numbered below 104 unless given permission by the math department advisor. All special topics, independent study, seminar, and reading courses require permission of the instructor before registering, and these courses do not count toward the major requirements unless approved by the faculty advisor.

Requirements for Minor Offered by Department

Plan A Minor (21-22 hours)
A complete calculus sequence plus three advanced mathematics courses OR two calculus courses with four advanced mathematics courses.¹

Required Calculus Courses
MATH 106 Calculus I 5
MATH 107 Calculus II 4

Credit Hours Subtotal: 9

Additional MATH Courses
Select four additional MATH courses from the following: 12-13

Plan B Minor (21-22 hours)
A complete calculus sequence plus one advanced mathematics course.

Required Calculus Courses
MATH 106 Calculus I 5
MATH 107 Calculus II 4

Credit Hours Subtotal: 9

Additional MATH Courses
Select four additional MATH courses from the following: 12-13

¹ This option is not available if the student has taken MATH 104 or MATH 106, MATH 107, or MATH 208 or their honors versions.
MATH 208 Calculus III
MATH 221 Differential Equations
MATH 309 Introduction to Mathematical Proofs
MATH 310 Introduction to Modern Algebra
MATH 314 Linear Algebra
MATH 325 Elementary Analysis
STAT 380 Statistics and Applications

400-level MATH courses

Credit Hours Subtotal: 12-13
Total Credit Hours: 21-22

1 The following 400-level courses cannot be used to fulfill the minor requirements: MATH 405, MATH 407, and MATH 408.

Plan B Minor (15-16 hours)

A complete calculus sequence plus one advanced mathematics course OR two calculus courses with two advanced mathematics courses. 1

Required Calculus Courses
MATH 106 Calculus I 5
MATH 107 Calculus II 4
Credit Hours Subtotal: 9

Additional MATH Course
Select two additional MATH courses from the following: 6-7
MATH 208 Calculus III
MATH 221 Differential Equations
MATH 309 Introduction to Mathematical Proofs
MATH 310 Introduction to Modern Algebra
MATH 314 Linear Algebra
MATH 325 Elementary Analysis
STAT 380 Statistics and Applications

Credit Hours Subtotal: 6-7
Total Credit Hours: 15-16

1 The following 400-level courses cannot be used to fulfill the minor requirements: MATH 405, MATH 407, and MATH 408.

Grade Rules

C- and D Grades
A grade of C or higher is required in all courses in the major or minor.

Pass/No Pass
No calculus course can be taken Pass/No Pass. No more than 3 hours of the advanced courses taken as Pass/No Pass will be counted toward the major or minor.

Restriction

Students with previous credit in any calculus course (that is, MATH 104 or MATH 106, MATH 107, or MATH 208 or their honors versions) may not register for or earn credit toward their degree with any math course numbered below 104 unless given permission by the math department advisor. All special topics, independent study, seminar, and reading courses require permission of the instructor before registering, and these courses do not count toward the major requirements unless approved by the faculty advisor.
MATH 103 College Algebra and Trigonometry
Prerequisites: Appropriate score on the Math Placement Exam; or grade of P,C, or better in MATH 100A.
Notes: Credit for both MATH 101 and 103 is not allowed; credit for both MATH 102 and MATH 103 is not allowed; students with previous credit in any calculus course (MATH 104, 106, 107, or 208) may not earn credit for this course.
Description: First and second degree equations and inequalities, absolute value, functions, polynomial and rational functions, exponential and logarithmic functions, trigonometric functions and identities, laws of sines and cosines, applications, polar coordinates, systems of equations, graphing, conic sections.
Credit Hours: 5
Max credits per semester: 5
Max credits per degree: 5

Grading Option: Graded with Option
Prerequisite for:

MATH 104 Applied Calculus
Prerequisites: Appropriate score on the Math Placement Exam; or grade of P,C, or better in MATH 101, MATH 102 or MATH 103.
Notes: Credit for both MATH 104 and 106 is not allowed; students with previous credit in any version of MATH 106, 107, or 208 may not earn credit for this course.
Description: Rudiments of differential and integral calculus with applications to problems from business, economics, and social sciences.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3

Grading Option: Graded with Option
Prerequisite for:

MATH 106 Calculus I
Prerequisites: Appropriate score on the Math Placement Exam; or grade of P,C, or better in MATH 102 or MATH 103.
Notes: Credit for both MATH 104 and MATH 106 is not allowed.
Description: Functions of one variable, limits, differentiation, exponential, trigonometric and inverse trigonometric functions, maximum-minimum, and basic integration theory (Riemann sums) with some applications.
Credit Hours: 5
Max credits per semester: 5
Max credits per degree: 5

Grading Option: Graded with Option
Prerequisite for:

MATH 107 Calculus II
Prerequisites: A grade of P,C or better in MATH 106.
Description: Integration theory; techniques of integration; applications of definite integrals; series, Taylor series, vectors, cross and dot products, lines and planes, space curves.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4

Grading Option: Graded with Option
Prerequisite for:

ACE: ACE 3 Math/Stat/Reasoning
Groups: Introductory Mathematics

ACE 3 Math/Stat/Reasoning

Groups: Introductory Mathematics
MATH 107H Honors: Calculus II
Prerequisites: Good standing in the University Honors Program or by invitation; and a grade of "B" or better in MATH 106 or equivalent
Description: For course description, see MATH 107.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
ACE: ACE 3 Math/Stat/Reasoning
Groups: Introductory Mathematics

MATH 107R Analytic Geometry and Calculus II
Prerequisites: A grade of B or C or better in MATH 106.
Notes: Open only to students who previously completed the 5 credit hour MATH 107 at UNL and wish to improve their grade.
Description: Integration theory, techniques of integration, applications of definite integrals, series, Taylor series, vectors, cross and dot products, lines and planes, space curves.
Credit Hours: 5
Max credits per semester: 5
Max credits per degree: 5
Grading Option: Graded with Option
ACE: ACE 3 Math/Stat/Reasoning
Groups: Introductory Mathematics

MATH 189H University Honors Seminar
Prerequisites: Good standing in the University Honors Program or by invitation; placement score on the Math Placement Examination (MPE) at the MATH 104-level or above.
Notes: Topics vary. A University Honors Seminar 189H is required of all students in the University Honors Program.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: METR 100, METR 140, PHYS 260, PHYS 261
ACE: ACE 3 Math/Stat/Reasoning
Groups: Introductory Mathematics

MATH 191 Special Topics in Mathematics
Description: Topics vary.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Grading Option: Graded with Option
Prerequisite for: METR 100, METR 140, PHYS 260, PHYS 261
Groups: Seminars, Ind Study, Topics

MATH 203 Contemporary Mathematics
Notes: Credit toward the degree cannot be earned in both MATH 203 and MATH 203J.
Description: Applications of quantitative reasoning and methods to problems and decision making in the areas of management, statistics, and social choice. Includes networks, critical paths, linear programming, sampling, central tendency, inference, voting methods, power index, game theory, and fair division problems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 3 Math/Stat/Reasoning
Groups: Introductory Mathematics

MATH 203J Contemporary Math
Prerequisites: Must be admitted to the College of Journalism.
Notes: Credit toward the degree cannot be earned in both MATH 203 and MATH 203J.
Description: Applications of quantitative reasoning and methods to problems and decisions making in areas of particular relevance to College of Journalism and Mass Communication, such as governance, finance, statistics, social choice, and graphical presentation of data. Financial mathematics, statistics and probability (sampling, central tendency, and inference), voting methods, power index, and fair division problems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 3 Math/Stat/Reasoning
Groups: Introductory Mathematics

MATH 203J Contemporary Math
Prerequisites: Must be admitted to the College of Journalism.
Notes: Credit toward the degree cannot be earned in both MATH 203 and MATH 203J.
Description: Applications of quantitative reasoning and methods to problems and decisions making in areas of particular relevance to College of Journalism and Mass Communication, such as governance, finance, statistics, social choice, and graphical presentation of data. Financial mathematics, statistics and probability (sampling, central tendency, and inference), voting methods, power index, and fair division problems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 3 Math/Stat/Reasoning
Groups: Introductory Mathematics
MATH 208 Calculus III
Prerequisites: A grade of P, C or better in MATH 107
Description: Vectors and surfaces, parametric equations and motion, functions of several variables, partial differentiation, maximum-minimum, Lagrange multipliers, multiple integration, vector fields, path integrals, Green's Theorem, and applications.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Prerequisite for: ABUS 341, MRKT 341; ACCT 200; ACCT 201; ACTS 401; BLAW 371; BLAW 371H; BLAW 372; BLAW 372H; CHME 114; CIVE 310; CIVE 310H; CSCE 155A; CSCE 155E; CSCE 155H; CSCE 155N; CSCE 155T; CSCE 156; CSCE 156H; ECEN 215; ECEN 305; ECEN 306; ECEN 328; ECON 311A; ECON 311B; ECON 312A; ECON 312B; ENVE 210; FINA 361; FINA 361H; MATH 208; MATH 221; MATH 314; MATH 325; MECH 223H; MECH 318; MECH 321; MECH 325; MECH 325H; MECH 373; MECH 373H; MECH 421; MECH 821, ENGR 421; METR 311; MNGT 301; MNGT 301H; MRKT 341H, RAIK 341H; PHYS 141H; PHYS 151; PHYS 211H; PHYS 213; PHYS 213H; SCMA 331; SCMA 335; SCMA 350; SCMA 350H; STAT 262;
ACE: ACE 3 Math/Stat/Reasoning
Groups: Introductory Mathematics

MATH 208H Honors: Calculus III
Prerequisites: Good Standing in the University Honors Program and a grade of P, C, or better in MATH 107 or MATH 107H
Description: Vectors and surfaces, parametric equations and motion, functions of several variables, partial differentiation, maximum-minimum, Lagrange multipliers, multiple integration, vector fields, path integrals, Green's Theorem, and applications.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Prerequisite for: ABUS 341, MRKT 341; ACCT 200; ACCT 201; ACTS 401; BLAW 371; BLAW 371H; BLAW 372; BLAW 372H; CHME 114; CIVE 310; CIVE 310H; CSCE 155A; CSCE 155E; CSCE 155H; CSCE 155N; CSCE 155T; CSCE 156; CSCE 156H; ECEN 215; ECEN 305; ECEN 306; ECEN 328; ECON 311A; ECON 311B; ECON 312A; ECON 312B; ENVE 210; FINA 361; FINA 361H; MATH 208; MATH 221; MATH 314; MATH 325; MECH 223H; MECH 318; MECH 321; MECH 325; MECH 325H; MECH 373; MECH 373H; MECH 421; MECH 821, ENGR 421; METR 311; MNGT 301; MNGT 301H; MRKT 341H, RAIK 341H; PHYS 141H; PHYS 151; PHYS 211H; PHYS 213; PHYS 213H; SCMA 331; SCMA 335; SCMA 350; SCMA 350H; STAT 262;
ACE: ACE 3 Math/Stat/Reasoning
Groups: Introductory Mathematics

MATH 211 Differential Equations
Prerequisites: A grade of P, C, or better in MATH 107 or MATH 107H
Description: First- and second-order methods for ordinary differential equations including: separable, linear, Laplace transforms, linear systems, and some applications.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: AGEN 303, BSEN 303; AGEN 344, BSEN 344; AGEN 350, BSEN 350; AGEN 953, BSEN 957, CIVE 957, GEOL 957; BSEN 260, BSEN 260; BSEN 311; BSEN 317; BSEN 943; BSEN 954, NRES 954; CHME 312; CHME 815; CHME 825; CHME 835; CIVE 310; CIVE 310H; ECEN 213; ECEN 216; ECEN 304; ECEN 306; ECEN 328; ENGR 410; MATH 430; MATH 435; MECH 310, MECH 310H; MECH 318; MECH 330; MECH 381; MECH 449; MECH 849; MECH 454; MECH 854; MECH 480, MECH 880; MECH 810; MECH 881; MECH 925; MECH 933; MECH 936; MECH 938; MECH 939; METR 312; PHYS 311; PHYS 422, PHYS 822, ECEN 422, ECEN 822
ACE: ACE 3 Math/Stat/Reasoning

MATH 221H Honors: Differential Equations
Prerequisites: Good Standing in the University Honors Program and a grade of P, C, or better in MATH 107 or MATH 107H
Description: For course description, see MATH 221/821.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Prerequisite for: AGEN 303, BSEN 303; AGEN 344, BSEN 344; AGEN 350, BSEN 350; BSEN 260, AGEN 260; BSEN 311; BSEN 317; CHME 312; CIVE 310; CIVE 310H; ECEN 213; ECEN 216; ECEN 304; ECEN 306; ECEN 328; ENGR 410; MATH 430; MATH 435; MECH 310, MECH 310H; MECH 318; MECH 330; MECH 381; MECH 449; MECH 849; MECH 454; MECH 854; MECH 480, MECH 880; MECH 810; MECH 881; MECH 925; MECH 933; MECH 936; MECH 938; MECH 939; METR 312; PHYS 311; PHYS 422, PHYS 822, ECEN 422, ECEN 822
ACE: ACE 3 Math/Stat/Reasoning

MATH 300 Mathematics Matters
Prerequisites: TEAC 308 or TEAC 416D or parallel.
Notes: Credit toward the degree may be earned in only one of: MATH 300 or MATH 300M.
Description: Numbers and operations. Develop an understanding of mathematics taught in the elementary school.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: MATH 301; TEAC 297E; TEAC 308
Groups: Introductory Mathematics

MATH 301 Geometry Matters
Prerequisites: MATH 300
Description: Geometry and measurement. Develop an understanding of geometry as taught in the elementary school.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: MATH 301; TEAC 297E; TEAC 308
Groups: Introductory Mathematics
MATH 302 Math Modeling
Notes: MATH 300 is a strongly recommended prerequisite. Intended for middle grades teaching endorsement majors with a mathematics emphasis and/or to elementary education majors who want a mathematics concentration.
Description: Using mathematics to model solutions or relationships for realistic problems taken from the middle school curriculum. The mathematics for these models are a mix of algebra, geometry, sequences (dynamical systems, queuing theory), functions (linear, exponential, logarithmic), and logic. Mathematical terminology, concepts and principles. Calculator based lab devices, graphing calculators, and computers as tools to collect data, to focus on concepts and ideas, and to make the mathematics more accessible.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

MATH 309 Introduction to Mathematical Proofs
Prerequisites: A grade of P, C, or better in MATH 107 or MATH 107H
Description: Basic set theory; elements of logic and types of proofs; induction; study of relations and functions; and cardinality of sets.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: MATH 325; MATH 350; MATH 430; MATH 450; MATH 471

MATH 310 Introduction to Modern Algebra
Prerequisites: A grade of P, C, or better in MATH 107 or MATH 107H
Description: Elementary number theory, including induction, the Fundamental Theorem of Arithmetic, and modular arithmetic. Introduction to rings and fields as natural extension of the integers. Particular emphasis on the study of polynomials with coefficients in the rational, real, or complex numbers.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: MATH 325; MATH 350; MATH 417; MATH 430; MATH 450; MATH 471

MATH 314H Honors: Linear Algebra
Prerequisites: Good Standing in the University Honors Program and a grade of P, C, or better in MATH 107 or MATH 107H
Description: For course description, see MATH 314.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: MATH 405; MATH 430; MATH 435; MECH 350; STAT 871
ACE: ACE 3 Math/Stat/Reasoning

MATH 316 Case Studies in Theoretical Ecology
Crosslisted with: BIOS 316, NRES 316
Prerequisites: MATH 106 or higher OR LIFE 121. Parallel registration in BIOS 316L.
Description: Introduction to biological literature, applied mathematics, computer programming, and/or statistical techniques relevant to field questions in ecology, evolution, and behavior. Typical mathematical topics include discrete dynamics, systems of differential equations, matrix algebra, or statistical inference and probability.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 4 Science
Groups: Advanced Mathematics Courses

MATH 325 Elementary Analysis
Prerequisites: A grade of P, C, or better in MATH 208/208H, MATH 309, or MATH 310.
Description: An introduction to mathematical reasoning, construction of proofs, and careful mathematical writing in the context of continuous mathematics and calculus. Topics may include the real number system, limits and continuity, the derivative, integration, and compactness in terms of the real number system.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: MATH 425; MATH 430; MATH 450; MATH 452; MATH 471

MATH 350 Geometry for High School Teaching
Prerequisites: A grade of P, C, or better in MATH 309 or MATH 310.
Description: For course description, see MATH 314.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: MATH 391 Special Topics in Mathematics
Groups: Introductory Mathematics

MATH 350 Geometry for High School Teaching
Prerequisites: A grade of P, C, or better in MATH 309 or MATH 310H
Notes: NOT open to MATH majors EXCEPT those under degree option "E" who are seeking a secondary mathematics teaching endorsement.
Description: Modern elementary geometry, plane transformations and applications, the axiomatic approach, Euclidean constructions. Additional topics vary.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Groups: Introductory Mathematics

MATH 391 Special Topics in Mathematics
Prerequisites: Permission.
Description: Topics vary.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option
Groups: Seminars, Ind Study, Topics
MATH 394 Independent Study in Mathematics
Prerequisites: Permission
Description: Independent reading or research directed by a faculty member.
Credit Hours: 1-3
Max credits per semester: 1
Max credits per degree: 6
Grading Option: Graded with Option
Groups: Advanced Mathematics Courses

MATH 399 Undergraduate Thesis
Prerequisites: Permission.
Description: Independent research leading to an undergraduate thesis.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option
Groups: Advanced Mathematics Courses

MATH 399H Honors Undergraduate Thesis
Prerequisites: Permission.
Description: Independent research and writing leading to an undergraduate thesis.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option
Groups: Seminars, Ind Study, Topics

MATH 405 Discrete and Finite Mathematics for High School Teaching
Prerequisites: A grade of P, C, or better in MATH 314 or MATH 314H
Notes: Credit is not allowed for both CSCE 235 and MATH 405.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Groups: Advanced Mathematics Courses

MATH 408 Mathematics for High School Teaching II
Crosslisted with: MATH 808
Prerequisites: A grade of C, P, or better grade in MATH 310 and 350
Notes: Open only MATH majors with a declared education option.
Description: Analysis of the connections between college mathematics and high school algebra and geometry.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL

MATH 407 Mathematics for High School Teaching I
Crosslisted with: MATH 807
Prerequisites: A grade of C, P, or better in MATH 208/208H and 310.
Notes: Open only MATH majors with a declared education option.
Description: Analysis of the connections between college mathematics and high school algebra and precalculus.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING

MATH 415 Theory of Linear Transformations
Crosslisted with: MATH 815
Prerequisites: MATH 314/814; and MATH 309, MATH 310, or MATH 325.
Description: Topics fundamental to the study of linear transformations on finite and infinite dimensional vector spaces over the real and complex number fields including: subspaces, direct sums, quotient spaces, dual spaces, matrix of a transformation, adjoint map, invariant subspaces, triangulation and diagonalization. Additional topics may include: Riesz Representation theorem, projections, normal operators, spectral theorem, polar decomposition, singular value decomposition, determinant as an n-linear functional, Cayley-Hamilton theorem, nilpotent operators, and Jordan canonical form.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL

MATH 417 Group Theory
Prerequisites: A grade of P, C, or better in MATH 310 or MATH 310H
Description: Elementary group theory, including cyclic, dihedral, and permutation groups; subgroups, cosets, normality, and quotient groups; fundamental isomorphism theorems; the theorems of Cayley, Lagrange, and Cauchy; and if time allows, Sylow's theorems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

MATH 423 Complex Analysis
Crosslisted with: MATH 823
Prerequisites: A grade of P, C, or better in MATH 208 or MATH 208H
Description: Complex numbers, functions of complex variables, analytic functions, complex integration, Cauchy's integral formulas, Taylor and Laurent series, calculus of residues and contour integration, conformal mappings, harmonic functions. Applications of these concepts in engineering, physical sciences, and mathematics.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Groups: Advanced Mathematics Courses
MATH 424 Introduction to Partial Differential Equations
Crosslisted with: MATH 824
Prerequisites: A grade of P, C, or better in MATH 208/208H and MATH 221/221H.
Notes: Not open to MA or MS students in mathematics or statistics.
Description: Derivation of the heat, wave, and potential equations; separation of variables method of solution; solutions of boundary value problems by use of Fourier series, Fourier transforms, eigenfunction expansions with emphasis on the Bessel and Legendre functions; interpretations of solutions in various physical settings.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: MECH 812

MATH 425 Mathematical Analysis
Prerequisites: A grade of P, C, or better in MATH 325
Description: Real number system, topology of Euclidean space and metric spaces, compactness, sequences, series, convergence and uniform convergence, and continuity and uniform continuity.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

MATH 428 Principles of Operations Research
Crosslisted with: MATH 828
Prerequisites: MATH 314 or MATH 314H; and RAIK 270H, STAT 380, or MECH 321.
Description: Introduction to techniques and applications of operations research. Includes linear programming, queueing theory, decision analysis, network analysis, and simulation.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 10 Integrated Product

MATH 430 Ordinary Differential Equations
Prerequisites: MATH 221 or MATH 221H; MATH 314 or MATH314H; MATH 309, MATH 310, or MATH 325.
Description: Qualitative behavior of solutions of systems of differential equations, including existence and uniqueness, extendibility, and periodic solutions. The Putzer algorithm, Floquet theory, matrix norms, linearization, stability theory, and period-doubling and chaos.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

MATH 433 Nonlinear Optimization
Crosslisted with: MATH 833
Prerequisites: MATH 314/814 and MATH 310 or MATH 325
Description: Mathematical theory of unconstrained and constrained optimization for nonlinear multivariate functions, particularly iterative methods, such as quasi-Newton methods, least squares optimization, and convex programming. Computer implementation of these methods.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Groups: Advanced Mathematics Courses

MATH 435 Math in the City
Prerequisites: Two of MATH 221, MATH 221H, MATH 314, MATH 314H, RAIK 270H, STAT 380.
Description: A research experience modeling problems of current interest to the local community, businesses, or government.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 10 Integrated Product

MATH 439 Mathematical Biology
Crosslisted with: MATH 839
Prerequisites: MATH 221/221H & MATH 314/314H.
Description: Discrete and continuous models in ecology: population models, predation, food webs, the spread of infectious diseases, and life histories. Elementary biochemical reaction kinetics; random processes in nature. Use of software for computation and graphics.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

MATH 440 Numerical Analysis I
Crosslisted with: CSCE 440, CSCE 840, MATH 840
Prerequisites: CSCE 155A, CSCE 155E, CSCE 155H, CSCE 155N, CSCE 155T, or SOFT 160; MATH 107.
Notes: Credit toward the degree may be earned in only one of the following: CSCE/MATH 440/840 and MECH 480/880.
Description: Principles of numerical computing and error analysis covering numerical error, root finding, systems of equations, interpolation, numerical differentiation and integration, and differential equations. Modeling real-world engineering problems on digital computers. Effects of floating point arithmetic.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

MATH 441 Approximation of Functions
Crosslisted with: CSCE 441, CSCE 841, MATH 841
Prerequisites: MATH 221/MATH 221H and MATH 314/MATH 314H.
Description: Polynomial interpolation, uniform approximation, orthogonal polynomials, least-first-power approximation, polynomial and spline interpolation, approximation and interpolation by rational functions.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 942, MATH 942

MATH 445 Number Theory
Crosslisted with: MATH 845
Prerequisites: MATH 310.
Description: Fundamentals of number theory, including congruences, primality tests, factoring methods. Diophantine equations, quadratic reciprocity, continued fractions, and elliptic curves.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Groups: Advanced Mathematics Courses
MATH 447 Numerical Linear Algebra
Crosslisted with: CSCE 447, CSCE 847, MATH 847
Prerequisites: MATH 314
Description: Mathematics and algorithms for numerically stable matrix and linear algebra computations, including solution of linear systems, computation of eigenvalues and eigenvectors, singular value decomposition, and QR decomposition.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CSCE 942, MATH 942
Groups: Advanced Mathematics Courses

MATH 450 Combinatorics
Prerequisites: MATH 309, MATH 310, or MATH 325.
Description: Theory of enumeration and/or existence of arrangements of objects: Pigeonhole principle, inclusion-exclusion, recurrence relations, generating functions, systems of distinct representatives, combinatorial designs and other applications.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Groups: Advanced Mathematics Courses

MATH 452 Graph Theory
Prerequisites: MATH 310 or MATH 325
Notes: Selected applications.
Description: Theory of directed and undirected graphs. Trees, circuits, subgraphs, matrix representations, coloring problems, and planar graphs. Methods which can be implemented by computer algorithms.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Groups: Advanced Mathematics Courses

MATH 471 Introduction to Topology
Prerequisites: MATH 309, MATH 310, or MATH 325.
Description: Elementary point-set and geometric topology. Point-set topics include topological spaces, continuous functions, homeomorphisms, connectedness, compactness, quotient spaces. Geometric topology topics include Euler characteristic, classification of surfaces, and other applications.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Groups: Advanced Mathematics Courses

MATH 487 Probability Theory
Crosslisted with: MATH 887
Prerequisites: MATH 314 or MATH 314H; and MATH 309, MATH 310, or MATH 325.
Description: Probability, conditional probability, Bayes' theorem, independence, discrete and continuous random variables, density and distribution functions, multivariate distributions, probability and moment generating functions, the central limit theorem, convergence of sequences of random variables, random walks, Poisson processes and applications.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

MATH 489 Stochastic Processes
Crosslisted with: MATH 889
Prerequisites: MATH 314 or MATH 314H; and STAT 380 or RAIK 270H.
Description: Markov chains, continuous-time Markov processes, the Poisson process, Brownian motion, introduction to stochastic calculus.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 10 Integrated Product

MATH 493 Seminar in Mathematics
Crosslisted with: MATH 893
Prerequisites: Permission.
Description: Topics in one or more branches of mathematics.
Credit Hours: 1-4
Min credits per semester: 1
Max credits per semester: 4
Max credits per degree: 8
Grading Option: Graded with Option
Groups: Seminars,Ind Study, Topics

MATH 494 Independent Study in Mathematics
Prerequisites: Permission.
Description: Directed reading or research with a faculty member.
Credit Hours: 1-4
Min credits per semester: 1
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Groups: Seminars,Ind Study, Topics

PLEASE NOTE
This document represents a sample 4-year plan for degree completion with this major. Actual course selection and sequence may vary and should be discussed individually with your college or department academic advisor. Advisors also can help you plan other experiences to enrich your undergraduate education such as internships, education abroad, undergraduate research, learning communities, and service learning and community-based learning.

Mathematics - Standard (B.A.)
Mathematics - sTANDARD (B.S.)

Career Information
The following represents a sample of the internships, jobs and graduate school programs that current students and recent graduates have reported.

Transferable Skills
- Apply mathematical and scientific skills to solve real-world problems
- Develop basic techniques of statistical analysis
- Analyze and explain data
- Make predictions using mathematical, statistical, and scientific modeling methods
- Simplify complex information and present it to others
- Examine problems from multiple perspectives
- Use quantitative analysis techniques
- Use qualitative analysis techniques
Jobs of Recent Graduates

• Business Analyst, Sandhills Publishing - Lincoln NE
• Quality Assurance Analyst, Nanonation - Lincoln NE
• Implementation Consultant, Fast Enterprises - Centennial CO
• Data Engineer, Hudl - Lincoln NE
• Website Production Support, Cabela’s - Omaha NE
• Programmer/Analyst, Centrix Solutions, Inc. - Lincoln NE
• Math Teacher, Omaha Public Schools - Omaha NE
• Actuary, CNA Insurance - Chicago IL
• Social Insurance Specialist, Social Security - Kansas City MO
• Statistical Analyst, Experian - Lincoln NE
• Mathematics Teacher, Norris School District #16 - Firth NE
• Software Development Engineer, Microsoft - Redmond WA
• 2nd Lieutenant, United States Army - Ft. Benning GA
• Account Executive, 93.7 The Ticket - Lincoln NE
• Data & Research Analyst, Mercer - Urbandale IA

Internships

• Data Science Intern, The Hartford Insurance Company - Hartford CT
• Actuarial Intern, Lincoln Financial Group - Omaha NE
• Intern, American Embassy - Berlin, Germany
• Programming Intern, Firespring - Lincoln NE
• Intern, Nebraska Human Resources Institute - Lincoln NE
• Intern, Bureau of Sociological Research - Lincoln NE
• Software Development Intern, Tigerpaw Software - Bellevue NE
• Intern, Tetrad Property Group - Lincoln NE
• Summer Intern, Southwestern - Nationwide
• Intern - Group Actuarial, Ameritas Life Insurance Corp. - Lincoln NE
• Programming Intern, Firespring - Lincoln NE
• Associate Logistics Professional Intern, ConAgra Foods - Omaha NE

Graduate & Professional Schools

• Ph. D., Mathematics, University of Nebraska-Lincoln - Lincoln NE
• Ph.D., Physics, University of Nebraska-Lincoln - Lincoln NE
• Ph.D., Economics, University of Tennessee - Knoxville TN
• Master’s Degree, Computer Science, University of Malaya - Kuala Lumpur ZZ
• Ph.D., Neural Computation, Center for Neural Basis of Cognition - Pittsburgh PA
• Doctor of Physical Therapy, Creighton University - Omaha NE
• Ph.D., Statistics, University of Nebraska-Lincoln - Lincoln NE
• Master’s Degree, System Engineering, University of Pennsylvania - Philadelphia PA
• Master’s Degree, Biostatistics, University of Southern California - Los Angeles CA
• Ph.D., Agricultural & Resource Economics, University of California, Berkeley - Berkeley CA
• Master’s Degree, Math Education, UNL - Lincoln NE
• Master’s Degree, Actuarial Science, UNL - Lincoln NE
• Master’s Degree, Physics, Ohio State University - Columbus OH
• Master’s Degree, Atmospheric Science, University of Utah - Salt Lake City UT