CHEMISTRY

Description
Chemistry deals with the analysis, structure, properties, and synthesis of matter ranging in size from single atoms to biologically-active small molecules to DNA and proteins. A degree in chemistry prepares students for many career options: industry (research, analysis, production), teaching, graduate studies, or professional schools. Chemistry is also a valuable second major for students completing degrees in a number of science, math, or engineering disciplines.

Laboratory Fee and Deposit. Students who enroll in chemistry laboratory courses pay a special fee to defray the cost of materials and equipment. The special fee is applied to tuition in the amounts given in the Office of the University Registrar’s website at registrar.unl.edu (http://registrar.unl.edu).

Breakage Costs. Glassware and equipment that are lost or damaged by the student are charged to the students N-card for 200-level, 300-level, and 400-level classes.

Program Assessment. In order to assist the department in evaluating the effectiveness of its programs, majors will be required in their senior year:

1. To take a standardized chemistry exam during their final year in the program. It will be administered during the middle of the spring semester at a time that is mutually agreeable to all graduating seniors.
2. To participate in an exit interview with a designated faculty member.
3. To submit a copy of the report written for CHEM 399 Undergraduate Research in Chemistry to the departmental office for evaluation.

The vice-chair will inform students of the scheduling and format of assessment activities. Results of participation in these assessment activities will in no way affect a students GPA or graduation.

College Requirements
College Admission
College Admission
The entrance requirements for the College of Arts and Sciences are the same as the UNL General Admission Requirements. Students who are admitted through the Admission by Review process may have certain conditions attached to their enrollment at UNL. These conditions are explained under “Removal of Deficiencies.”

In addition to these requirements, the College of Arts and Sciences strongly recommends a third and fourth year of one foreign language. Four years of high school coursework in the same language will fulfill the College of Arts and Sciences’ language requirement. It will also allow students to continue language study at a more advanced level at UNL, and provide more opportunity to study abroad.

Transfer Students
To be considered for admission as a transfer student, Nebraska resident or nonresident, students must have an accumulated average of C (2.0 on a 4.0 scale) and a minimum C average in the last semester of attendance at another college. Transfer students who graduated from high school January 1997 and after must also meet the UNL General Admission Requirements. Those transfer students who graduated before January 1997 must have completed in high school, 3 years of English, 2 years of the same foreign language, 2 years of algebra, and 1 year of geometry.

Transfer students who have completed less than 12 credit hours of college study must also submit either their ACT or SAT scores.

Ordinarily, hours earned at a similarly accredited college or university are applicable to the UNL degree. The College, however, will evaluate all hours submitted on an application for transfer, and reserves the right to accept or reject any of them, based upon its exclusion and restriction policies. Sixty is the maximum number of hours the University will accept on transfer from a two-year college or international institution. Transfer credit in the major or minor must be approved by the departmental advisor on a Request for Substitution Form to meet specific course requirements, group requirements, or course level requirements in the major or minor. At least half of the hours in the major field must be completed at the University regardless of the number of hours transferred.

The College of Arts and Sciences will accept no more than 15 semester hours of C- and D grades from other schools. The C- and D grades cannot be applied toward requirements for a major or minor. This policy does not apply to the transfer of grades from UNO or UNK to UNL. All D grades may be transferred from UNO or UNK, but they are not applicable to a major or minor.

Readmitted Students
UNL students who choose not to take courses for more than 2 consecutive terms, must reapply to UNL. Students readmitted to the College of Arts and Sciences will follow the requirements stated in the catalog for the academic year of readmission and re-enrollment as a degree-seeking student in Arts and Sciences. In consultation with advisors, a student may choose to follow a catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at UNL in the College of Arts and Sciences. Students must complete all degree requirements from a single catalog year. Beginning in 1990-1991, the catalog which a student follows for degree requirements may not be more than 10 years old at the time of graduation.

Admission Deficiencies/Removal of Deficiencies
Students must remove entrance deficiencies in geometry and foreign language as soon as possible, and before graduating from the College of Arts and Sciences. For questions and more information, students should consult a college advisor in the Academic and Career Advising Center in 107 Oldfather Hall.

Removing Foreign Language Deficiencies
Students must complete the second semester of a first year language sequence to clear the deficiency and the second semester of the second year language sequence to complete the college graduation requirement in language.

Removing Geometry Deficiencies
A deficiency of one year of geometry can be removed by taking high school geometry courses through an approved independent study program, or by completing a geometry course from an accredited community college or a four-year institution. Neither of these options will count for college credit.

College Degree Requirements
College Distribution Requirements
Bachelor of Arts or Bachelor of Science (16 hours + Language)
The College of Arts and Sciences distribution requirements are designed to further the purposes of liberal education by encouraging study in several different areas within the College. All requirements are in addition to University ACE requirements. A student may not use a single course
to satisfy more than one of the following five distribution requirements. A student cannot use a single course to satisfy both an ACE outcome and a College distribution requirement. A student cannot use a course from their primary major to satisfy the Breadth Requirement (F), but may apply an ancillary requirement of the primary major or a course from their second major toward this requirement. Independent study or reading courses and internships cannot be used to satisfy distribution requirements. To see a complete list of excluded courses, run a degree audit through MyRED.

Courses from interdisciplinary programs will count in the same area as courses from the home/cross-listed department(s).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDR A</td>
<td>Written Communication</td>
<td>3</td>
</tr>
<tr>
<td>CDR B</td>
<td>Natural, Physical, and Mathematical Sciences with Lab</td>
<td>4</td>
</tr>
<tr>
<td>CDR C</td>
<td>Humanities</td>
<td>3</td>
</tr>
<tr>
<td>CDR D</td>
<td>Social Science</td>
<td>3</td>
</tr>
<tr>
<td>CDR E</td>
<td>Language</td>
<td>0-16</td>
</tr>
<tr>
<td>CDR F</td>
<td>Additional Breadth</td>
<td>3</td>
</tr>
</tbody>
</table>

| Credit Hours Subtotal: | 16-32 |

1. See degree audit or a College of Arts and Sciences advisor for approved geography and anthropology courses that apply as natural science.
2. Language courses numbered 210 or below apply only for the foreign language requirement.
3. See degree audit or College of Arts and Sciences advisor for list of natural/physical science courses in anthropology, geography, and psychology that do not apply as social science.

Scientific Base
Bachelor of Science Only (60 hours)
The bachelor of science degree requires students to complete 60 hours in mathematical, physical and natural sciences. Approved courses for scientific base credit come from the following College of Arts and Sciences disciplines: actuarial science, anthropology (selected courses), astronomy, biochemistry (excluding BIOC 101), biological sciences (excluding BIOS 203), chemistry (excluding CHEM 101), computer science (excluding CSCE 10), geography (selected courses), geology, life sciences, mathematics (excluding courses below MATH 104), meteorology, microbiology, physics and statistics.

See your degree audit or a College of Arts and Sciences advisor for a complete list including individual classes that fall outside of the disciplines listed above. Up to 12 hours of scientific and technical courses offered by other colleges may be accepted toward this requirement with approval of a college advisor.

Foreign Languages/Language Requirement
Languages Exemption Policy
UNL and the College of Arts and Sciences will exempt or waive students from the UNL entrance requirement of two years of the same foreign language or from the College’s language distribution requirement based on documentation only. The following are the options and procedures for documentation:

High School Transcripts
For the University entrance requirement, students must show an official high school transcript with two or more years of the same foreign language.

For the College of Arts and Sciences College Distribution Requirement
E-Language, students must show an official high school transcript with four or more years of the same foreign language in high school, or show evidence of graduation from a non-English-speaking foreign high school. Students whose native language is not English must show English as a Second Language study on an official high school transcript. Four years of ESL at the high school level (9th, 10th, 11th and 12th grades) will be the basis for a waiver of the CDR E Language requirement.

Proficiency Examination at UNL
For the University entrance requirement, students who do not have transcript documentation can request to take a proficiency exam in the language. (This is not the same test as the Modern Languages Placement Exam.) However, UNL will provide testing only in the languages it teaches. Currently, these languages are: Arabic, French, German, Spanish, Russian, Czech, Japanese, Chinese.

For the College of Arts and Sciences College Distribution Requirement
E-Language, the Department of Modern Languages will oversee the test at the 202 level. If the student passes the test, the department will sign the College Request for Waiver form and indicate the level of proficiency. The form is then forwarded to the Arts and Sciences Advising Center for approval.

The Department of Modern Languages will oversee the test and provide written documentation to the Arts and Sciences Advising Center the level of proficiency passed.

Distance Education
For the University entrance requirement, students without transcript documentation who claim proficiency in a language not taught at UNL, have the option of seeking out a distance education program in languages. If the student completes the equivalent of 102 from an
approved distance education program, the student will meet the UNL entrance requirement. The student must have the course work approved before he/she takes/completes the course as equivalent to 102 by a College advisor. The student then completes the course and has the distance education program send the transcript to the Admissions Office.

For the College of Arts and Sciences College Distribution Requirement E-Language, the student can seek out a distance education program and complete the equivalent of the 102-level course. The student must submit the request on the College Request for Substitution form and have the course work approved by a College advisor. The student then completes the course and has the distance education program send the transcript to the Admissions Office.

Third Language Option
If a student demonstrates knowledge of two foreign languages at the 102 level, the College of Arts and Sciences may consider waiving two semesters of the four semester College Distribution Requirement E-Languages requirement. If this waiver were granted, the student would then be required to complete 101 and 102 in another, 3rd foreign language at UNL.

Minimum Hours Required for Graduation
A minimum of 120 semester hours of credit is required for graduation from the College of Arts and Sciences. A total grade point average of at least 2.0 is required.

Grade Rules
Restrictions on C- and D Grades
The College will accept no more than 15 semester hours of C- and D grades from other schools except for UNO and UNK. No transfer C- and D grades can be applied toward requirements in a major or a minor. No UNL C- and D grades can be applied toward requirements in a major or a minor.

Pass/No Pass Privilege
University regulations for the Pass/No Pass (P/N) privilege state:
- The Pass/No Pass option is designed for your use by seeking to expand your intellectual horizons by taking courses in areas where you may have had minimal preparation.
- Neither the P nor the N grade contribute to your GPA.
- P is interpreted to mean C or above.
- A change to or from a Pass/No Pass may be made until mid-term (see academic calendar for specific dates per term).
- The Pass/No Pass or grade registration cannot conflict with the policy of the professor, department, college, or University governing the grading option.
- Changing to or from Pass/No Pass requires using the MyRED system to change the grading option or filing a Drop/Add form with the Office of the University Registrar, 107 Canfield Administration Building. After mid-term of the course, a student registered for Pass/No Pass cannot change to a grade registration unless the Pass/No Pass registration is in conflict with the policy of the professor, department, college, or University governing Pass/No Pass.
- The Pass/No Pass grading option cannot be used for the removal of C- or D or F grades.

Pass/No Pass privileges in the College of Arts and Sciences are extended to students according to the following additional regulations:
- Pass/No Pass hours can count toward fulfillment of University ACE requirements and college distribution requirements up to the 24-hour maximum.
- Most Arts and Sciences departments and programs do not allow courses graded Pass/No Pass to apply to the major or minor. Students should refer to the department’s or program’s section of the catalog for clarification. By college rule, departments can allow up to 6 hours of Pass/No Pass in the major or minor.
- Departments may specify that certain courses of theirs can be taken only on a P/N basis. The college will permit no more than a total of 24 semester hours of P/N grades to be applied toward degree requirements. This total includes all Pass grades earned at UNL and other U.S. schools. NOTE: This 24-hour limit is more restrictive than the University regulation.

Grading Appeals
A student who feels that he/she has been unfairly graded must ordinarily take the following sequential steps in a timely manner, usually by initiating the appeal in the semester following the awarding of the grade:
1. Talk with the instructor concerned. Most problems are resolved at this point.
2. Talk to the instructor’s department chairperson.
3. Take the case to the Grading Appeal Committee of the department concerned. The Committee should be contacted through the department chairperson.
4. Take the case to the College Grading Appeals Committee by contacting the Dean’s Office, 1223 Oldfather Hall.

Course Level Requirements
Courses Numbered above 299
Thirty of the 120 semester hours of credit must be in courses numbered above 299. Of the 30 hours above 299, 15 hours (1/2) must be completed in residence at UNL.

Graduate Courses
Seniors in the University who have obtained in advance the approval of the dean for Graduate Studies may receive up to 12 hours credit for graduate courses taken in addition to the courses necessary to complete their undergraduate work, provided that such credits are earned within the calendar year prior to receipt of the baccalaureate. For procedures, inquire at the Office of Graduate Studies.

Course work taken prior to receipt of the baccalaureate may not always be accepted for transfer to other institutions as graduate work.

Residency
Residency Requirement and Open Enrollment and Summer Independent Study Courses
Students must complete at least 30 of the 120 total hours for their degree at UNL. Students must complete at least 1/2 of their major course work including 6 hours above 299 in their major, and 15 of the 30 hours required above 299 in residence. Credit earned during education abroad may be used toward the residency requirement if students register through UNL and participate in prior-approved education abroad programs. UNL open enrollment and summer independent study courses count toward residence.

ACE Requirements
Consistent with the mission and values of the University, ACE is based on a shared set of four institutional objectives and ten student learning
The ACE program was approved by faculty in all eight undergraduate colleges and endorsed by the Faculty Senate, the student government, and the Academic Planning Committee in January 2008 for implementation in the fall 2009. ACE aligns with current national initiatives in general education.

Key characteristics of ACE demonstrate the benefits of the program to students:

- Students receive a broad education with exposure to multiple disciplines, critical life skills and important reasoning, inquiry, and civic capacities.
- ACE is simple and transparent for students, faculty and advisors. Students complete the equivalent of 3 credit hours for each of the ten student learning outcomes.
- Students connect and integrate their ACE experiences with their selected major.
- Students can transfer all ACE certified courses across colleges within the institution to meet the ACE requirement and any course from outside the institution that is directly equivalent to a UNL ACE-certified course. Courses from outside institutions without direct equivalents may be considered with appropriate documentation for ACE credit (see academic advisor).

ACE allows faculty to assess and improve their effectiveness and facilitate students’ learning.

ACE Institutional Objectives and Student Learning Outcomes

To meet the ACE Program requirement, a student will complete a minimum of 3 credit hours for each of the ten ACE Student Learning Outcomes (a total of 30 ACE credit hours). See the ACE website at: http://ace.unl.edu for the most current information and the most recently certified courses.

Catalog Rule

Students must fulfill the requirements stated in the catalog for the academic year in which they are first admitted to and enrolled as a degree-seeking student at UNL. In consultation with advisors, a student may choose to follow a subsequent catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at UNL in the College of Arts and Sciences. Students must complete all degree requirements from a single catalog year. Beginning in 1990-1991 the catalog which a student follows for degree requirements may not be more than 10 years old at the time of graduation.

Learning Outcomes

Majors in chemistry will be able to:

1. Explain basic chemical principles.
2. Perform calculations and data analyses to solve chemical problems.
3. Apply basic chemical principles to chemical systems.
4. Design chemical experiments to study chemical compounds and processes.
5. Employ laboratory techniques and instrumentation to perform chemical experiments.
6. Apply chemical hygiene and safety best practices.
7. Utilize computer-based tools to research and critically analyze chemical information.
8. Communicate integrated scientific knowledge and practice.
9. Secure entry into graduate programs, professional schools or professional positions that build upon the degree.

Major Requirements

Bachelor of Science

The bachelor of science (BS) is recommended for students planning graduate studies or professional careers in chemistry and is also an excellent choice for pre-medicine.

Core Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101</td>
<td>Career Opportunities in Chemistry</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 113</td>
<td>Fundamental Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 114</td>
<td>Fundamental Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 221</td>
<td>Elementary Quantitative Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td>11</td>
</tr>
</tbody>
</table>

Organic Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 261</td>
<td>Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 262</td>
<td>Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 263</td>
<td>Organic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 264</td>
<td>Organic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td>10</td>
</tr>
</tbody>
</table>

Biochemistry or Chemical Biology

Select one of the following sets:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 431</td>
<td>Structure and Metabolism</td>
<td>5</td>
</tr>
<tr>
<td>& CHEM 433</td>
<td>and Biochemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 435</td>
<td>Chemical Biology</td>
<td></td>
</tr>
<tr>
<td>& CHEM 433</td>
<td>and Biochemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td>5</td>
</tr>
</tbody>
</table>

Physical Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 481</td>
<td>Physical Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 482</td>
<td>Physical Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 484</td>
<td>Physical Chemical Measurements</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td>11</td>
</tr>
</tbody>
</table>

Undergraduate Research

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 399</td>
<td>Undergraduate Research in Chemistry (at least 2 cr)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credit Hours

40

Specific Major Requirements

Capstone

Select one of the following sets:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 421</td>
<td>Analytical Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>& CHEM 423</td>
<td>and Analytical Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>or CHEM 441</td>
<td>Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>& CHEM 443</td>
<td>and Inorganic Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td>5</td>
</tr>
</tbody>
</table>

Mathematics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 106</td>
<td>Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>MATH 107</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 208</td>
<td>Calculus III</td>
<td>4</td>
</tr>
</tbody>
</table>

Bachelor of Arts
The bachelor of arts (BA) program is designed for students needing undergraduate training in chemistry as preparation for professional careers outside of chemistry and fits easily into pre-medical, pre-pharmacy, pre-health, and pre-law degree programs.

Core Requirements
Career and Academic Planning
CHEM 101 Career Opportunities in Chemistry 1
Credit Hours Subtotal: 1
General Chemistry & Quantitative Analysis
CHEM 109 General Chemistry I 4
CHEM 110 General Chemistry II 4
CHEM 221 Elementary Quantitative Analysis 4
Credit Hours Subtotal: 12
Organic Chemistry
CHEM 251 & CHEM 253 Organic Chemistry I and Organic Chemistry I Laboratory 4
CHEM 252 & CHEM 254 Organic Chemistry II and Organic Chemistry II Laboratory 4
Credit Hours Subtotal: 8
Physical Chemistry
CHEM 471 or CHEM 481 Physical Chemistry I 4
Credit Hours Subtotal: 4
Total Credit Hours 25
Specific Major Requirements
Capstone
Select two of the following sets: 10
CHEM 421 & CHEM 423 Analytical Chemistry and Analytical Chemistry Laboratory
CHEM 431 & CHEM 433 Structure and Metabolism and Biochemistry Laboratory
or CHEM 431: Chemical Biology & CHEM 433: Biochemistry Laboratory
CHEM 441 & CHEM 443 Inorganic Chemistry and Inorganic Chemistry Laboratory
Credit Hours Subtotal: 10
Mathematics
MATH 106 Calculus I 5
MATH 107 or MATH 238 Calculus II 4-5
Credit Hours Subtotal: 9-10
Physics
PHYS 141 Elementary General Physics I 5
PHYS 142 Elementary General Physics II 5
Credit Hours Subtotal: 10
Total Credit Hours 29-30

NOTE: It is possible to transfer between the BS and BA programs despite the different sets of courses, but the student should visit the chemistry advisor to work out the details.

Additional Major Requirements
Grade Rules
C- and D Grades
A grade of C or above is required for all courses in the major, including any math or physics courses.

Pass/No Pass
No course taken Pass/No Pass will be counted toward the major with the exceptions of CHEM 101, CHEM 396, and/or CHEM 399.

Requirements for Minor Offered by Department
Plan A Minor (23-24 hours)
Completion of a chemistry sequence plus an additional twelve (12) hours of chemistry:
Select one of the following chemistry sequences: 11-12
CHEM 109 & CHEM 110 & CHEM 221 General Chemistry I and General Chemistry II and Elementary Quantitative Analysis
CHEM 113 & CHEM 114 & CHEM 221 Fundamental Chemistry I and Fundamental Chemistry II and Elementary Quantitative Analysis
Select an additional 12 hours of chemistry 1 12
Total Credit Hours 23-24

Plan B Minor (19-20 hours)
Completion of a chemistry sequence plus an additional eight (8) hours of chemistry:
Select one of the following chemistry sequences: 11-12
CHEM 109 & CHEM 110 & CHEM 221 General Chemistry I and General Chemistry II and Elementary Quantitative Analysis
CHEM 113 & CHEM 114 & CHEM 221 Fundamental Chemistry I and Fundamental Chemistry II and Elementary Quantitative Analysis
Select an additional 8 hours of chemistry 1 8
Total Credit Hours 19-20

Grade Rules
C- and D Grades
A grade of C or above is required for all courses in the minor, including any math or physics courses.

Pass/No Pass
No course taken Pass/No Pass will be counted toward the minor with the exceptions of CHEM 101, CHEM 396, and/or CHEM 399.

CHEM 101 Career Opportunities in Chemistry
Description: Introduction to chemistry careers and faculty research interests in the Department of Chemistry. This course is required for all chemistry majors (B.S. and B.A.) but is open to all students interested in learning about the chemistry program and its relationship to careers.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC
CHEM 105 Chemistry in Context I
Prerequisites: Math 101, or placement into Math 102 or above.
Notes: Credit toward the degree may be earned in only one of: CHEM 105, 109, 111, 113, or 195. Students planning to take CHEM 251 and 252, or CHEM 261 and 262, should register for CHEM 109 and 110, or CHEM 113 and 114 (the general chemistry sequence). CHEM 105 is the first part of a two-semester sequence, along with CHEM 106, to constitute the "Chemistry in Context" series.
Description: The extraordinary chemistry of ordinary things. The chemical model of solids, liquids, gases, molecules, and salts. How these models are used to explore chemical aspects of biological, social, or economic situation.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: AGRO 327, HORT 327, TLMT 327; ASCI 240; NRES 319
ACE: ACE 4 Science
CHEM 106 Chemistry in Context II
Prerequisites: CHEM 105
Notes: Continuation of CHEM 105. CHEM 106 will not serve as a prerequisite for any chemistry course. Students planning to take CHEM 251-252 or 263-264, should take CHEM 109-110 or 113-114 (general chemistry sequence). CHEM 106 is the second part of a two-semester sequence, along with CHEM 105, to constitute the "Chemistry in Context" series.
Description: How organic chemistry and biochemistry complement one another. Chemical aspects of biological, social, or economic situations.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: ASCI 320
CHEM 109 General Chemistry I
Prerequisites: MATH 103 or a Math Placement Test score for MATH 104 or 106
Notes: Credit toward the degree may be earned in only one of: CHEM 105, 109, 111, 113, or 195.
Description: Lecture and laboratory serving as an introduction to chemical reactions, the mole concept, properties of the states of matter, atomic structure, periodic properties, chemical bonding, and molecular structure.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: AGRO 327, HORT 327, TLMT 327; AGRO 455, AGRO 855, NRES 455, NRES 855, SOIL 455; ASCI 340; BIOC 205; CHME 114; CHM 202; FDST 401, FDST 801; FORS 300; FORS 411; GEOL 210; MATH 360; NRES 319
ACE: ACE 4 Science
CHEM 110 General Chemistry II
Prerequisites: CHEM 109
Description: Lecture and laboratory serving as an introduction to intermolecular forces, kinetics, chemical equilibrium, thermodynamics, and electrochemistry.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: AGRO 455, AGRO 855, NRES 455, NRES 855, SOIL 455; ASCI 340; BSEN 355; CHEM 221; CHEM 251; CHEM 255; CHEM 261; CHEM 263; FORS 300; FORS 411
ACE: ACE 4 Science
CHEM 111 Chemistry for Engineering and Technology
Prerequisites: Math Placement Test score for MATH 106; one unit high school chemistry; one unit high school physics.
Notes: Credit towards the degree may be earned in only one: CHEM 105, 109, 111, 113, or 195. Not open to chemical engineering majors.
CHEM 111 is a one semester introduction to the fundamentals of chemistry course for engineering students.
Description: Fundamentals of chemistry for engineering.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: BSEN 355; MATH 360
CHEM 113 Fundamental Chemistry I
Prerequisites: A Math Placement Test score for MATH 106; one unit of high school chemistry; and one unit of high school physics.
Notes: Credit towards the degree may be earned in only one: CHEM 105, 109, 111, 113, or 195.
Description: Fundamentals of chemistry for students in physical sciences or chemical engineering. Includes atomic and molecular structure, chemical bonding, states of matter, solutions, and acid-base reactions. Intended for students who plan to take upper-level courses in chemistry.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: CHEM 114; CHME 114; CHME 202; GEOL 210
ACE: ACE 4 Science
CHEM 114 Fundamental Chemistry II
Prerequisites: CHEM 113.
Notes: Parallel: CHEM 221 is the associated laboratory course.
Description: Chemical kinetics, oxidation-reduction reactions and electrochemistry, ionic solution equilibria, thermodynamic concepts, and chemistry of selected elements.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: BSEN 355; CHEM 251; CHEM 255; CHEM 261; CHEM 263

CHEM 116 Quantitative Chemistry Laboratory
Prerequisites: CHEM 113.
Notes: Parallel: CHEM 114. Designed for students (including chemistry and chemical engineering) who wish to take advanced laboratory instruction in such courses as CHEM 263, 264, 471/871, 482/882, and 484/884. Credit may not be earned in both CHEM 116 and 221.
Description: Elementary quantitative laboratory instruction in analytical methods and preparations including titrimetry, gravimetry, separations, and use of pH meter and spectrophotometer, qualitative chemical analysis.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LEC

CHEM 131 The Science of Food
Crosslisted with: FDST 131, NUTR 131
Description: General scientific concepts in biology, chemistry, and physics using food as a model. What food is from both chemical and nutritional perspectives, and the fate of food from when it leaves the farm to when it becomes a part of the individual. Assists students in making intelligent decisions about many food related controversial issues (e.g., food irradiation, food additives, health foods).
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: FDST 301
ACE: ACE 4 Science

CHEM 191H Freshman Honors Chemistry I
Prerequisites: Open to freshman only; good standing in the University Honors Program; and concurrent registration in CHEM 109 or 111 or 113; 3 units of high school mathematics including algebra and geometry; 1 unit high school chemistry; 1 unit high school physics.
Description: Seminar in which special topics in chemistry are taught at a level appropriate for the student population.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC
Prerequisite for: CHEM 109 or 111 or 113, with a minimum grade of "B"; Honors Program; and concurrent registration in CHEM 110 or 114; and permission.
Description: Seminar in which special topics in chemistry are taught at a level appropriate for the student population.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC

CHEM 192H Freshman Honors Chemistry II
Prerequisites: Open to freshman only; good standing in the University Honors Program; CHEM 109 or 111 or 113, with a minimum grade of "B"; recommendation(s) from chemistry instructor(s) from previous semester; concurrent registration in CHEM 110 or 114; and permission.
Description: Seminar in which special topics in chemistry are taught at a level appropriate for the student population.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC

CHEM 195 Today's Chemistry in Education
Description: Interactive, practical approach to learning chemistry and its relationship to today's world. Intended for elementary and middle-level education majors. Uses the Operation Chemistry model to help students learn the essential chemistry content and teaching practices for elementary-level classrooms.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHEM 221 Elementary Quantitative Analysis
Prerequisites: CHEM 110 or parallel CHEM 114
Notes: This is the laboratory course for CHEM 114 as well as a stand-alone course in quantitative analysis. Credit may not be earned in both CHEM 221 and 116.
Description: Introduction to principles of quantitative analytical chemistry, including ionic equilibria and solution stoichiometry. Lab instruction includes titrimetry, gravimetry, separations, and use of pH meter and spectrophotometer.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: AGRO 455, AGRO 855, NRES 455, NRES 855, SOIL 455

CHEM 251 Organic Chemistry I
Prerequisites: CHEM 110 or 114 with a minimum grade of C.
Notes: This course is designed to be taken parallel with CHEM 253 Organic Chemistry Laboratory. CHEM 251 and 252, with their corresponding labs of CHEM 253 and 254, form a continuous basic course in organic chemistry.
Description: Chemistry of carbon compounds. Applications to the biological sciences, agriculture and pre-professional programs including premedical and pre-dental. Emphasizes basic principles.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: AGRO 455, AGRO 855, NRES 455, NRES 855, SOIL 455; BIOC 321; VBMS 403

CHEM 252 Organic Chemistry II
Prerequisites: CHEM 251 and 253.
Description: Chemistry of carbonyl compounds. Aspects of aromatic chemistry, heterocycles, carbohydrates and nitrogen compounds, with some emphasis on the organic compounds found in nature.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Prerequisites</th>
<th>Description</th>
<th>Notes</th>
<th>Credit Hours</th>
<th>Format</th>
<th>Max credits per semester</th>
<th>Max credits per degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 262</td>
<td>Organic Chemistry</td>
<td>CHEM 261</td>
<td>Description: Basic techniques of organic chemistry. Structure,</td>
<td>Description: Students following the professional curriculum in chemistry</td>
<td>3</td>
<td>LEC</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>identification, physical properties of compounds, molecular modeling,</td>
<td>should elect this course.</td>
<td></td>
<td>LAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and introduction to the spectroscopic characteristics of organic compounds.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 254</td>
<td>Organic Chemistry II Laboratory</td>
<td>CHEM 251, 253; CHEM 252 or</td>
<td>Description: Synthesis of representative organic compounds. Qualitative</td>
<td>Description: Students having credit in CHEM 251 or its equivalent may</td>
<td>1</td>
<td>LEC</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>parallel.</td>
<td>analysis of organic compounds. Naturally occurring compounds.</td>
<td>receive only 1 hour of credit in CHEM 263.</td>
<td></td>
<td>LAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 255</td>
<td>Biological Organic Chemistry</td>
<td>CHEM 110 or 114</td>
<td>Description: One-semester organic chemistry course in which biological</td>
<td>Description: Students having credit in CHEM 251 or its equivalent</td>
<td>3</td>
<td>LEC</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>molecules and biochemical reactions will be used to explain and illustrate</td>
<td>should elect this course.</td>
<td></td>
<td>LAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the central concepts of organic chemistry.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 257</td>
<td>Biological Organic Chemistry Laboratory</td>
<td>CHEM 255 or concurrent</td>
<td>Description: Basic techniques in organic chemistry with a focus on biomolecules. Structure, identification, and physical properties of compounds, accompanied with molecular modeling and introduction to spectroscopy.</td>
<td>Description: Continuation of CHEM 263. Lab work in qualitative organic analysis.</td>
<td>1</td>
<td>LEC</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Credit Hours: 3</td>
<td></td>
<td></td>
<td>LAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 253</td>
<td>Organic Chemistry I Laboratory</td>
<td>CHEM 110 or 114, with a grade of C; CHEM 251.</td>
<td>Notes: This course should not be taken by majors in Chemistry or Chemical Engineering.</td>
<td>Description: Students following the professional curriculum in chemistry should elect this course.</td>
<td>3</td>
<td>LEC</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 292H</td>
<td>Honors: Sophomore Chemistry I</td>
<td>CHEM 110 or CHEM 114 with minimum grades of C.</td>
<td>Description: Seminar in which special topics in chemistry are taught at a level appropriate for the student population.</td>
<td>Description: Seminar in which special topics in chemistry are taught at a level appropriate for the student population.</td>
<td>1</td>
<td>LEC</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 291H</td>
<td>Honors: Sophomore Chemistry II</td>
<td>CHEM 221 or 251 or 261, with minimum grade of "B"; recommendation(s) from chemistry instructor(s) from previous semester; concurrent registration in CHEM 221 or 251 or 261; and permission.</td>
<td>Description: Seminar in which special topics in chemistry are taught at a level appropriate for the student population.</td>
<td>Description: Seminar in which special topics in chemistry are taught at a level appropriate for the student population.</td>
<td>1</td>
<td>LEC</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 263</td>
<td>Organic Chemistry Laboratory</td>
<td>CHEM 110 or CHEM 114</td>
<td>Description: Students following the professional curriculum in chemistry</td>
<td>Description: Students following the professional curriculum in chemistry should elect this course.</td>
<td>2</td>
<td>LEC</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with minimum grades of C.</td>
<td>should elect this course.</td>
<td></td>
<td></td>
<td>LAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 264</td>
<td>Organic Chemistry Laboratory</td>
<td>CHEM 261 and 263A</td>
<td>Notes: Parallel: CHEM 262.</td>
<td>Description: Continuation of CHEM 263A.</td>
<td>1</td>
<td>LEC</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Description: Continuation of CHEM 263A.</td>
<td></td>
<td></td>
<td>LAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 264A</td>
<td>Organic Chemistry Laboratory</td>
<td>CHEM 261 and 263A</td>
<td>Notes: Parallel: CHEM 262.</td>
<td>Description: Continuation of CHEM 263A.</td>
<td>2</td>
<td>LEC</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Description: Continuation of CHEM 263A.</td>
<td></td>
<td></td>
<td>LAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 263A</td>
<td>Organic Chemistry Laboratory</td>
<td>CHEM 261 and 263A</td>
<td>Notes: Parallel: CHEM 262.</td>
<td>Description: Continuation of CHEM 263A.</td>
<td>1</td>
<td>LEC</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Description: Continuation of CHEM 263A.</td>
<td></td>
<td></td>
<td>LAB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- CHEM 264A Honors: Sophomore Chemistry I
 - Prerequisites: Sophomore standing; good standing in the University Honors Program; CHEM 110 or 114, with minimum grade of "B"; recommendation(s) from chemistry instructor(s) from previous semester; concurrent registration in CHEM 221 or 251 or 261; and permission.
 - Description: Seminar in which special topics in chemistry are taught at a level appropriate for the student population.

- CHEM 292H Honors: Sophomore Chemistry II
 - Prerequisites: good standing in the University Honors Program; CHEM 221 or 251 or 261, with minimum grade of "B"; recommendation(s) from chemistry instructor(s) from previous semester; concurrent registration in CHEM 251 or 252 or 262; and permission.
 - Description: Seminar in which special topics in chemistry are taught at a level appropriate for the student population.
CHEM 396 Independent Study
Credit Hours: 1-12
Min credits per semester: 1
Max credits per semester: 12
Max credits per degree: 12
Format: IND

CHEM 399 Undergraduate Research in Chemistry
Prerequisites: Permission.
Description: Open to undergraduates desiring to undertake a special research project under the direction of a member of the departmental faculty. The grade will be awarded following the submission of a written progress and/or final report.
Credit Hours: 1-12
Min credits per semester: 1
Max credits per semester: 12
Max credits per degree: 12
Format: IND

CHEM 421 Analytical Chemistry
Crosslisted with: CHEM 821
Prerequisites: CHEM 471/871 or 481/881; parallel CHEM 423/823
Description: Chemical and physical properties applied to quantitative chemical analysis. Solution equilibria, stoichiometry, and instrumental theory and techniques.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
ACE: ACE 10 Integrated Product

CHEM 423 Analytical Chemistry Laboratory
Crosslisted with: CHEM 823
Prerequisites: Same as for CHEM 421/821.
Description: Lab designed to accompany CHEM 421/821. Applications of analytical chemical principles to laboratory problems.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2

CHEM 431 Structure and Metabolism
Crosslisted with: BIOC 431, BIOC 831, BIOS 431, BIOS 831, CHEM 831
Prerequisites: CHEM 252 or CHEM 262 with a grade of C or better. LIFE 120 and BIOS 206 are recommended
Notes: First course of a two-semester, comprehensive biochemistry course sequence.
Description: Structure and function of proteins, nucleic acids, carbohydrates and lipids; nature of enzymes; major metabolic pathways of catabolism; and biochemical energy production.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: VBMS 410

CHEM 432 Metabolism and Biological Information
Crosslisted with: BIOC 432, BIOC 832, BIOS 432, CHEM 832, BIOS 832
Prerequisites: BIOC 431/831 with a grade of C or better, BIOS 206 or AGRO 215.
Notes: Continuation of BIOC 431/831.
Description: Major metabolic pathways of anabolism, structural and biochemical aspects of biological information flow and use in biotechnology.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: BIOC 435; BIOC 934, BIOS 934, CHEM 934

CHEM 433 Biochemistry Laboratory
Crosslisted with: BIOC 433, BIOC 833, BIOS 433, BIOS 833, CHEM 833
Prerequisites: BIOC 431/831 (or concurrent enrollment) or CHEM 435/835.
Description: Introduction to techniques used in biochemical and biotechnology research, including measurement of pH, spectroscopy, analysis of enzymes, chromatography, fractionation of macromolecules, electrophoresis, and centrifugation.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2

CHEM 434 Plant Biochemistry
Crosslisted with: AGRO 434, BIOC 434, BIOS 434, AGRO 834, BIOS 834, CHEM 834
Prerequisites: BIOC/BIOS/CHEM 431/831.
Description: Biochemical metabolism unique to plants. Relationships of topics previously acquired in general biochemistry to biochemical processes unique to plants. Biochemical mechanisms behind physiological processes discussed in plant or crop physiology.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHEM 435 Chemical Biology
Crosslisted with: CHEM 835
Prerequisites: Chem 252 or 262, and Chem 221
Notes: Credit toward the undergraduate or graduate degree cannot be earned in both CHEM 435/835, and 431/831 and/or 432/832 or their equivalents.
Description: Fundamentals of chemical biology with an emphasis on the underlying principles of biomolecular structures, macromolecular-small molecule interactions, including mechanistic aspects of enzymes and cofactors, use of modified enzymes to alter biochemical pathways, and the use of chemical tools for understanding biological processes.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHEM 436 Biochemistry II
Crosslisted with: CHEM 836
Prerequisites: CHEM 435/835, BIOC 435, BIOS 435
Description: Further exploration of biochemical principles, including molecular binding, enzyme kinetics, enzyme mechanisms, and interactions of macromolecules.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHEM 437 Physical Organic Chemistry
Crosslisted with: CHEM 837
Prerequisites: CHEM 252 or 262, and CHEM 221
Notes: Credit toward the undergraduate or graduate degree cannot be earned in both CHEM 437/837, and CHEM 252/262 or 435/835 or their equivalents.
Description: Physicochemical principles of organic chemistry; including electronic theory of chemical bonds and resonance, reaction mechanisms, and chemical thermodynamics.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

CHEM 438 Physical Organic Chemistry Laboratory
Crosslisted with: CHEM 838
Prerequisites: CHEM 437/837
Description: Laboratory exercises in physicochemical principles of organic chemistry, including solution equilibria, reaction mechanisms, and chemical thermodynamics.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LAB
CHEM 441 Inorganic Chemistry
Crosslisted with: CHEM 841
Prerequisites: CHEM 221 with at least a C; CHEM 252 or CHEM 262.
Description: CHEM 441/841 and the accompanying lab course, CHEM 443/843, constitute a basic course in inorganic chemistry. Structure, bonding, properties, and reactions of inorganic compounds with emphasis on the relationships and trends that are embodied in the periodic table of the elements.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
ACE: ACE 10 Integrated Product

CHEM 443 Inorganic Chemistry Laboratory
Crosslisted with: CHEM 843
Prerequisites: CHEM 252 or 262-264.
Notes: Parallel: CHEM 441/841 or permission.
Description: Introduction to typical inorganic chemistry laboratory techniques through the preparation and characterization of inorganic compounds.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LEC

CHEM 463 Advanced Organic Preparations
Crosslisted with: CHEM 863
Prerequisites: CHEM 252 or 254.
Notes: For students who wish additional laboratory work in organic chemistry.
Credit Hours: 1-5
Min credits per semester: 1
Max credits per semester: 5
Max credits per degree: 5
Format: LAB

CHEM 471 Physical Chemistry
Crosslisted with: CHEM 871
Prerequisites: CHEM 114 and 116, or 221, with a grade of 'C' or better; MATH 106 and 238, or 107; one year college physics.
Notes: Credit may not be earned in both CHEM 471/871 and CHEM 481/881.
Description: Conceptual and mathematical foundations of classical and statistical thermodynamics. Applications of thermodynamics to phase and chemical equilibria. Thermodynamics of solutions of small molecules and of polymers. Biological applications of thermodynamics. Introduction to chemical and biochemical spectroscopy.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC

CHEM 481 Physical Chemistry I
Crosslisted with: CHEM 881
Prerequisites: CHEM 221 with grade of at least C; MATH 208; PHYS 212.
Notes: Credit may not be earned in both CHEM 471/871 and 481/881.
Description: CHEM 481/881 and 482/882 with accompanying lab 484/884 form a continuous basic course in physical chemistry for students interested in chemistry as a profession. Introduction to quantum mechanics and statistical mechanics; application to problems in atomic and molecular structure and to spectroscopy.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC

CHEM 482 Physical Chemistry II
Crosslisted with: CHEM 882
Prerequisites: CHEM 481/881
Notes: This course should parallel CHEM 484/884. Continuation of CHEM 481/881.
Description: Thermodynamics and statistical mechanics and their application to the study of solids, liquids, gases, solutions, phase equilibria, and chemical equilibria. Chemical kinetics and reaction dynamics.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC

CHEM 484 Physical Chemical Measurements
Crosslisted with: CHEM 884
Prerequisites: CHEM 481/881. Parallel with CHEM 482/882.
Notes: Lab designed to accompany CHEM 482.
Description: Applications of physical measurements and principles to study chemical systems and processes.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LAB

CHEM 484A Physical Chemical Measurements
Crosslisted with: CHEM 884A
Prerequisites: CHEM 481/881.
Notes: Parallel with CHEM 482/882.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LAB

CHEM 486 Advanced Topics in Biophysical Chemistry
Crosslisted with: BIOC 486, BIOC 886, BIOS 486, BIOS 886, CHEM 886
Prerequisites: CHEM 471/871 or 481/881.
Description: Applications of thermodynamics to biochemical phenomena, optical properties of proteins and polynucleotides, and kinetics of rapid reactions.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
CHEM 498 Undergraduate Research
Prerequisites: BIOC 433 and permission
Description: Research on a specific biochemical project under the supervision of a biological chemistry faculty member.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Format: LEC

PLEASE NOTE
This document represents a sample 4-year plan for degree completion with this major. Actual course selection and sequence may vary and should be discussed individually with your college or department academic advisor. Advisors also can help you plan other experiences to enrich your undergraduate education such as internships, education abroad, undergraduate research, learning communities, and service learning and community-based learning.

Chemistry (B.A.)
Icon Legend: Critical

16 HR TERM 1

Career Academic Planning
complete CHEM 101

16 HR TERM 2

General Chemistry
complete CHEM 110

Mathematics
complete MATH 107

ACE 1 Written Texts
complete 1 from ACE1

CDR A: Writing
C
complete 1 from ACE1

CDR E: Language
C
recommend 1 or more courses

16 HR TERM 3

General Chemistry
complete CHEM 221

Organic Chem I And Lab
complete CHEM 251, CHEM 253
12 Chemistry

Physics
complete PHYS 141 5hr

Electives
complete Any Course 3hr

In consultation with your advisor, select elective courses or courses that meet a 2nd major, minor, sci-base or upper level requirement.

15 HR TERM 4

Organic Chem II And Lab
complete CHEM 252, CHEM 254 4hr

CHEM 252 and 254 are ideally completed in the fourth term of enrollment. They become critical to your success in the major if not completed by the fifth term of enrollment.

Physics
complete PHYS 142 5hr

ACE 2 Communication Skill
complete 1 from ACE2 3hr

Electives
complete Any Course 3hr

In consultation with your advisor, select elective courses or courses that meet a 2nd major, minor, sci-base or upper level requirement.

16 HR TERM 6

Physical Chemistry
complete CHEM 471 4hr

ACE 5 Humanities
complete 1 from ACE5 3hr

ACE 9 Global/Human Divers
complete 1 from ACE9 3hr

Electives
complete Any Course 6hr

In consultation with your advisor, select elective courses or courses that meet a 2nd major, minor, sci-base or upper level requirement.

14 HR TERM 7

Chemistry Capstone
complete 2 from CHEM 441, CHEM 443, CHEM 421, CHEM 423, CHEM 441, CHEM 443 5hr

Complete one of the following sets - CHEM 431 or 435 and 433, CHEM 421 and 423, or CHEM 441 and 443. CHEM 431 or 435 and CHEM 433 are recommended for this term.

ACE 6 Social Sciences
complete 1 from ACE6 3hr

Electives
complete Any Course 6hr

In consultation with your advisor, select elective courses or courses that meet a 2nd major, minor, sci-base or upper level requirement.
In consultation with your advisor, select elective courses or courses that meet a 2nd major, minor, sci-base or upper level requirement.

Graduation Requirements
1. A minimum 2.00 GPA required for graduation.
2. ***Total Credits Applying Toward 120 Total Hours***
3. Complete 30 hours in residence at UNL.

Chemistry (B.S.)
Icon Legend: Critical

16 HR TERM 1

Career Academic Planning

complete CHEM 101

1hr

Fundamental Chemistry

complete CHEM 113

4hr

CHEM 113 is ideally completed in the first term of enrollment. It becomes critical to your success in the major if not completed by the second term of enrollment. CHEM 113 will fulfill the ACE 4 requirement.

Mathematics

complete MATH 106

5hr

MATH 106 will fulfill the ACE 3 requirement.

ACE 1 Written Texts

complete 1 from ACE1

3hr

CDR E: Language

recommend 1 or more courses

3hr

If not complete, choose a language course according to your placement and proficiency. CDR E is met after 4th level (202) of most languages.

14 HR TERM 2

Fundamental Chemistry

complete CHEM 114, CHEM 221
CHEM 221 will fulfill the CDR B and CDR BL requirements.

Mathematics

complete MATH 107

MATH 107 will fulfill the CDR F (Additional Breadth) requirement.

CDR E: Language

recommend 1 or more courses

If not complete, choose a language course according to your placement and proficiency. CDR E is met after 4th level (202) of most languages.

16 HR TERM 3

Organic Chemistry And Lab

complete CHEM 261, CHEM 263

5hr

Physics

complete PHYS 211

4hr

Mathematics

complete MATH 208

CDR A: Writing

complete 1 from ACE1

Complete an additional course approved as ACE 1.

15 HR TERM 4

Organic Chemistry And Lab

complete CHEM 262, CHEM 264

4hr

CHEM 262 and 264 are ideally completed in the fourth term of enrollment. They become critical to your success in the major if not completed by the fifth term of enrollment.

Physics

complete PHYS 212

4hr

ACE 2 Communication Skill

complete 1 from ACE2

3hr

Electives

complete Any Course

3hr

In consultation with your advisor, select elective courses or courses that meet a 2nd major, minor, sci-base or upper level requirement.

16 HR TERM 5

Physical Chemistry

complete CHEM 481

4hr

Biochem or Chem Biology

complete 2 from CHEM 431, CHEM 435, CHEM 433

5hr

Complete either CHEM 431 or 435 and also CHEM 433.

Undergrad Research

complete CHEM 399

1hr

ACE 6 Social Sciences

complete 1 from ACE6
Chemistry

Electives

3hr

complete Any Course

In consultation with your advisor, select elective courses or courses that meet a 2nd major, minor, sci-base or upper level requirement.

14 HR TERM 6

Physical Chemistry

complete CHEM 482, CHEM 484

Undergrad Research

7hr

complete CHEM 399

ACE 5 Humanities

1hr

complete 1 from ACE5

Electives

3hr

complete Any Course

In consultation with your advisor, select elective courses or courses that meet a 2nd major, minor, sci-base or upper level requirement.

15 HR TERM 7

Chemistry Capstone

5hr

complete 2 from CHEM 441, CHEM 443, CHEM 421, CHEM 423

Complete one of the following sets - CHEM 441 and 443 or CHEM 421 and 423. CHEM 441 or 421 will fulfill the ACE 10 requirement.

ACE 8 Ethical Principles

3hr

complete 1 from ACE8

CDR C: Humanities

3hr

complete 1 from Any Arabic Course at the 300 Level, Any Classics Course, Any Czech Course at the 300 Level, Any Czech Course at the 400 Level, Any English Course, FREN 282, Any French Course at the 300 Level, Any French Course at the 400 Level, GERM 282, Any German Course at the 300 Level, Any German Course at the 400 Level, Any Greek Course at the 300 Level, Any Greek Course at the 400 Level, Any Hebrew Course at the 300 Level, Any History Course, Any Japanese Course at the 300 Level, Any Latin Course at the 300 Level, Any Latin Course at the 400 Level, Any Philosophy Course, Any Religious Studies Course at any Level, Any Russian Course at the 300 Level, Any Russian Course at the 400 Level, SPAN 264, SPAN 265, Any Spanish Course at the 300 Level, Any Spanish Course at the 400 Level

3hr

Complete an approved course from a Humanities discipline: ARAB, CLAS, CZEC, ENGL, FILM, FREN, GERM, GREK, HEBR, HIST, JAPN, LATN, PHIL, RELG, RUSS, SPAN.

Electives

3hr

complete Any Course

In consultation with your advisor, select elective courses or courses that meet a 2nd major, minor, sci-base or upper level requirement.

15 HR TERM 8

ACE 7 Arts

3hr

complete 1 from ACE7

ACE 9 Global/Human Divers

3hr

complete 1 from ACE9

CDR D: Social Sciences

3hr

complete 1 from Any Anthropology Course at any Level, Any Communications Course at any Level, Any Geography Course at any Level, Any National Security Studies Course at any Level, Any Political Science Course at any Level, Any Psychology Course at any Level, Any Sociology Course at any Level

3hr

Complete an approved course from a Social Science discipline: ANTH, COMM, GEOG, NSST, POLS, PSYC, SOCI.

Electives

6hr

complete Any Course
In consultation with your advisor, select elective courses or courses that meet a 2nd major, minor, sci-base or upper level requirement.

Graduation Requirements
1. A minimum 2.00 GPA required for graduation.
2. ***Total Credits Applying Toward 120 Total Hours***
3. Complete 30 hours in residence at UNL.

Career Information
The following represents a sample of the internships, jobs and graduate school programs that current students and recent graduates have reported.

Transferable Skills
- Comprehend and critically evaluate complex information
- Use quantitative analytical computational techniques
- Make predictions using mathematical, statistical, and scientific modeling methods
- Understand and use proper laboratory and technical skills and instruments
- Define problems and identifying causes
- Support and communicate claims using clear evidence
- Simplify complex information and present it to others
- Apply mathematical and scientific skills to solve real-world problems
- Document and replicate processes and procedures
- Design and implement research experiments

Jobs of Recent Graduates
- Product Associate, LI-COR Biosciences - Lincoln NE
- Associate Scientist I, Teva Pharmaceutical - Salt Lake City UT
- Principle Scientist 1, Novartis - Lincoln NE
- Pharmacy Intern I, Methodist Women's Hospital - Omaha NE
- Chemistry Lab Technician, Arkansas State University - Jonesboro AR
- Technical Services, Epic Systems Corporation - Madison WI
- Chemical Contractor, Zoetis - Lincoln NE
- Quality Management Chemist, Cargill - Blair NE
- Chemical Analyst, Purac America - Lincolnshire IL
- Civilian Scientist, United States Navy - China Lake CA

Internships
- Intern, Colorado Bureau of Investigation - CO
- Research and Development Intern, Gelita - Sergeant Bluff IA
- Distinguished Life Sciences Scholar, Beckman/Distinguished Life Sciences Scholars - Lincoln NE

Grad Schools
- DDS, University of Nebraska Medical Center College of Dentistry - Lincoln NE
- Chemistry, UNL - Lincoln NE
- College of Pharmacy, University of Nebraska Medical Center - Omaha NE
- Chemistry, University of Nebraska-Lincoln - Lincoln NE
- Medical School, University of Nebraska Medical Center - Omaha NE
- PhD in Organic Chemistry, University of California-Riverside -
- Doctor of Optometry, Southern College of Optometry - Memphis TN
- Molecular Genetics, Ohio State University - Columbus OH
- Ph.D. Analytical Chemistry, Ohio State University - Columbus OH
- Doctorate of Physical Therapy, Missouri State University - Springfield MO