CHEMISTRY

Description
Chemistry deals with the analysis, structure, properties, and synthesis of matter ranging in size from single atoms to biologically-active small molecules to DNA and proteins. A degree in chemistry prepares students for many career options: industry (research, analysis, production), teaching, graduate studies, or professional schools. Chemistry is also a valuable second major for students completing degrees in a number of science, math, or engineering disciplines.

Laboratory Fee and Deposit. Students who enroll in chemistry laboratory courses pay a special fee to defray the cost of materials and equipment. The special fee is applied to tuition in the amounts given in the Office of the University Registrar’s website at registrar.unl.edu (http://registrar.unl.edu).

Breakage Costs. Glassware and equipment that are lost or damaged by the student are charged to the student’s N-card for 200-level, 300-level, and 400-level classes.

Program Assessment. In order to assist the department in evaluating the effectiveness of its programs, majors will be required in their senior year:

1. To take a standardized chemistry exam during their final year in the program. It will be administered during the middle of the spring semester at a time that is mutually agreeable to all graduating seniors.
2. To participate in an exit interview with a designated faculty member.
3. To submit a copy of the report written for CHEM 399 Undergraduate Research in Chemistry to the departmental office for evaluation.

The vice-chair will inform students of the scheduling and format of assessment activities. Results of participation in these assessment activities will in no way affect a student’s GPA or graduation.

College Requirements

College Admission

College Admission
The entrance requirements for the College of Arts and Sciences are the same as the University of Nebraska—Lincoln General Admission Requirements. Students who are admitted through the Admission by Review process may have certain conditions attached to their enrollment at Nebraska. These conditions are explained under “Removal of Deficiencies.”

In addition to these requirements, the College of Arts and Sciences strongly recommends a third and fourth year of one foreign language. Four years of high school course work in the same language will fulfill the College of Arts and Sciences’ language requirement. It will also allow students to continue language study at a more advanced level at the University of Nebraska—Lincoln, and provide more opportunity to study abroad.

Transfer Students
To be considered for admission as a transfer student, Nebraska resident or nonresident, students must have an accumulated average of C (2.0 on a 4.0 scale) and a minimum C average in the last semester of attendance at another college. Transfer students who graduated from high school January 1997 and after must also meet the University of Nebraska—Lincoln General Admission Requirements. Those transfer students who graduated before January 1997 must have completed in high school, 3 years of English, 2 years of the same foreign language, 2 years of algebra, and 1 year of geometry. Transfer students who have completed less than 12 credit hours of college study must also submit either their ACT or SAT scores.

Ordinarily, hours earned at a similarly accredited college or university are applicable to the University of Nebraska—Lincoln degree. The College, however, will evaluate all hours submitted on an application for transfer, and reserves the right to accept or reject any of them, based upon its exclusion and restriction policies. Sixty (60) is the maximum number of hours the University will accept on transfer from a two-year college or international institution. Transfer credit in the major or minor must be approved by the departmental advisor on a Request for Substitution Form to meet specific course requirements, group requirements, or course level requirements in the major or minor. At least half of the hours in the major field must be completed at the University regardless of the number of hours transferred.

The College of Arts and Sciences will accept no more than 15 semester hours of C- and D grades from other schools. The C- and D grades cannot be applied toward requirements for a major or minor. This policy does not apply to the transfer of grades from UNO or UNK to the University of Nebraska—Lincoln. All D grades may be transferred from UNO or UNK, but they are not applicable to a major or minor.

Readmitted Students
University of Nebraska—Lincoln students who choose not to take courses for more than two consecutive terms, must reapply to the University of Nebraska—Lincoln. Students readmitted to the College of Arts and Sciences will follow the requirements stated in the catalog for the academic year of readmission and re-enrollment as a degree-seeking student in Arts and Sciences. In consultation with advisors, a student may choose to follow a catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at Nebraska in the College of Arts and Sciences. Students must complete all degree requirements from a single catalog year. Beginning in 1990-1991, the catalog which a student follows for degree requirements may not be more than 10 years old at the time of graduation.

Admission Deficiencies/Removal of Deficiencies
Students must remove entrance deficiencies in geometry and foreign language as soon as possible, and before graduating from the College of Arts and Sciences. For questions and more information, students should consult a college advisor in the Academic and Career Advising Center in 107 Oldfather Hall.

Removing Foreign Language Deficiencies
Students must complete the second semester of a first year language sequence to clear the deficiency and the second semester of the second year language sequence to complete the college graduation requirement in language.

Removing Geometry Deficiencies
A deficiency of one year of geometry can be removed by taking high school geometry courses through an approved independent study program, or by completing a geometry course from an accredited community college or a four-year institution. Neither of these options will count for college credit.

Chemistry
College Degree Requirements

College Distribution Requirements
Bachelor of Arts or Bachelor of Science (16 hours + Language)
The College of Arts and Sciences distribution requirements are designed to further the purposes of liberal education by encouraging study in several different areas within the College. All requirements are in addition to University ACE requirements. A student may not use a single course to satisfy more than one of the following five distribution requirements. A student cannot use a course from their second major toward this requirement. Independent study or reading courses and internships cannot be used to satisfy distribution requirements. To see a complete list of excluded courses, run a degree audit through MyRED.

Courses from interdisciplinary programs will count in the same area as courses from the home/cross-listed department(s).

College Distribution Requirements

CDR A - Written Communication
Select from courses approved for ACE outcome 1.

CDR B and BL - Natural, Physical, and Mathematical Sciences with Lab
Select from biochemistry, biological sciences, chemistry, computer science, geology, meteorology, mathematics, physics and statistics. Must include one lab in the natural or physical sciences. Lab courses may be selected from biochemistry, biological sciences, chemistry, geology, meteorology and physics.

Some courses from geography and anthropology may also be used to satisfy the lab requirement above. \(^1\)

CDR C - Humanities
Select from classics, English, history, modern languages and literatures, philosophy, and religious studies. \(^2\)

CDR D - Social Science
Select from: anthropology, communication studies, geography, political science, psychology, or sociology. \(^3\)

CDR E - Language
Fullfilled by the completion of the 6-credit-hour second-year sequence in a single foreign language in one of the following departments: Classics and religious studies, modern languages and literatures, or anthropology. Instruction is currently available in Arabic, Chinese, Czech, French, German, Greek, Japanese, Latin, Omega, Russian, and Spanish. A student who has completed the fourth-year level of one foreign language in high school is exempt from the languages requirement.

CDR F - Additional Breadth
Select from: natural, physical and mathematical sciences (Area B), humanities (Area C), or social sciences (Area D). Cannot be a course from the primary major.

Credit Hours Subtotal: \(^3\)

See degree audit or a College of Arts and Sciences advisor for approved geography and anthropology courses that apply as natural science.

Language courses numbered 210 or below apply only for the foreign language requirement.

Scientific Base
Bachelor of Science Only (60 hours)
The bachelor of science degree requires students to complete 60 hours in mathematical, physical and natural sciences. Approved courses for scientific base credit come from the following College of Arts and Sciences disciplines: actuarial science, anthropology (selected courses), astronomy, biochemistry (excluding BIOC 101), biological sciences (excluding BIOS 203), chemistry (excluding CHEM 101), computer science (excluding CSCE 10), geography (selected courses), geology, life sciences, mathematics (excluding courses below MATH 104), meteorology, microbiology, physics and statistics.

See your degree audit or a College of Arts and Sciences advisor for a complete list including individual classes that fall outside of the disciplines listed above. Up to 12 hours of scientific and technical courses offered by other colleges may be accepted toward this requirement with approval of a college advisor.

Foreign Languages/Language Requirement

Languages Exemption Policy
The University of Nebraska–Lincoln and the College of Arts and Sciences will exempt or waive students from the Nebraska entrance requirement of two years of the same foreign language or from the College's language distribution requirement based on documentation only. The following are the options and procedures for documentation:

High School Transcripts
For the University entrance requirement, students must show an official high school transcript with two or more years of the same foreign language.

For the College of Arts and Sciences College Distribution Requirement
E-Language, students must show an official high school transcript with four or more years of the same foreign language in high school, or show evidence of graduation from a non-English-speaking foreign high school. Students whose native language is not English must show English as a Second Language study on an official high school transcript. Four years of ESL at the high school level (9th, 10th, 11th and 12th grades) will be the basis for a waiver of the CDR E Language requirement.

Proficiency Examination at UNL
For the University entrance requirement, students who do not have transcript documentation can request to take a proficiency exam in the language. (This is not the same test as the Modern Languages Placement Exam.) However, the University will provide testing only in the languages it teaches. Currently, these languages are: Arabic, French, German, Spanish, Russian, Czech, Japanese, Chinese.

For the College of Arts and Sciences College Distribution Requirement
E-Language, the Department of Modern Languages will oversee the test at the 202 level. If the student passes the test, the department will sign the College Request for Waiver form and indicate the level of proficiency. The form is then forwarded to the Advising Center for approval.

The Department of Modern Languages will oversee the test and provide written documentation to the College of Arts and Sciences Advising Center the level of proficiency passed.
University regulations for the Pass/No Pass (P/N) privilege state:

Pass/No Pass Privilege
requirements in a major or a minor. D grades can be applied toward requirements in a major or a minor. No
Restrictions on C- and D Grades
Grade Rules
A minimum of 120 semester hours of credit is required for graduation from the College of Arts and Sciences. A total grade point average of at least 2.0 is required.

Minimum Hours Required for Graduation
A minimum of 120 semester hours of credit is required for graduation from the College of Arts and Sciences. A total grade point average of at least 2.0 is required.

Grade Rules
Restrictions on C- and D Grades
The College will accept no more than 15 semester hours of C- and D grades from other schools except for UNO and UNK. No transfer C- and D grades can be applied toward requirements in a major or a minor. No University of Nebraska–Lincoln C- and D grades can be applied toward requirements in a major or a minor.

Pass/No Pass Privilege
University regulations for the Pass/No Pass (P/N) privilege state:

• The Pass/No Pass option is designed for your use by seeking to expand your intellectual horizons by taking courses in areas where you may have had minimal preparation.
• Neither the P nor the N grade contribute to your GPA.
• P is interpreted to mean C or above.
• A change to or from a Pass/No Pass may be made until mid-term (see academic calendar for specific dates per term).
• The Pass/No Pass or grade registration cannot conflict with the policy of the professor, department, college, or University governing the grading option.
• Changing to or from Pass/No Pass requires using the MyRED system to change the grading option or filing a Drop/Add form with the Office of the University Registrar, 107 Canfield Administration Building. After mid-term of the course, a student registered for Pass/No Pass cannot change to a grade registration unless the Pass/No Pass registration is in conflict with the policy of the professor, department, college, or University governing Pass/No Pass.

Pass/No Pass privileges in the College of Arts and Sciences are extended to students according to the following additional regulations:

• Pass/No Pass hours can count toward fulfillment of University ACE requirements and college distribution requirements up to the 24-hour maximum.
• Most Arts and Sciences departments and programs do not allow courses graded Pass/No Pass to apply to the major or minor. Students should refer to the department’s or program’s section of the catalog for clarification. By college rule, departments can allow up to 6 hours of Pass/No Pass in the major or minor.
• Departments may specify that certain courses of theirs can be taken only on a P/N basis.
• The college will permit no more than a total of 24 semester hours of P/N grades to be applied toward degree requirements. This total includes all Pass grades earned at the University and other U.S. schools. NOTE: This 24-hour limit is more restrictive than the University regulation.

Grading Appeals
A student who feels that he/she has been unfairly graded must ordinarily take the following sequential steps in a timely manner, usually by initiating the appeal in the semester following the awarding of the grade:

1. Talk with the instructor concerned. Most problems are resolved at this point.
2. Talk to the instructor’s department chairperson.
3. Take the case to the Grading Appeal Committee of the department concerned. The Committee should be contacted through the department chairperson.
4. Take the case to the College Grading Appeals Committee by contacting the Dean’s Office, 1223 Oldfather Hall.

Course Level Requirements
Courses Numbered above 299
Thirty of the 120 semester hours of credit must be in courses numbered above 299. Of the 30 hours above 299, 15 hours (1/2) must be completed in residence at UNL.

Graduate Courses
Seniors in the University who have obtained in advance the approval of the dean for Graduate Studies may receive up to 12 hours credit for graduate courses taken in addition to the courses necessary to complete their undergraduate work, provided that such credits are earned within the calendar year prior to receipt of the baccalaureate. For procedures, inquire at the Office of Graduate Studies.

Course work taken prior to receipt of the baccalaureate may not always be accepted for transfer to other institutions as graduate work.

Residency
Residency Requirement and Open Enrollment and Summer Independent Study Courses
Students must complete at least 30 of the 120 total hours for their degree at the University of Nebraska–Lincoln. Students must complete at least 1/2 of their major course work including 6 hours above 299 in their major, and 15 of the 30 hours required above 299 in residence. Credit earned during education abroad may be used toward the residency requirement if students register through the University and participate in
prior-approved education abroad programs. The University of Nebraska–Lincoln open enrollment and summer independent study courses count toward residence.

ACE Requirements

Consistent with the mission and values of the University, ACE is based on a shared set of four institutional objectives and ten student learning outcomes. The ACE program was approved by faculty in all eight undergraduate colleges and endorsed by the Faculty Senate, the student government, and the Academic Planning Committee in January 2008 for implementation in the fall 2009. ACE aligns with current national initiatives in general education.

Key characteristics of ACE demonstrate the benefits of the program to students:

- Students receive a broad education with exposure to multiple disciplines, critical life skills and important reasoning, inquiry, and civic capacities.
- ACE is simple and transparent for students, faculty and advisors. Students complete the equivalent of 3 credit hours for each of the ten student learning outcomes.
- Students connect and integrate their ACE experiences with their selected major.
- Students can transfer all ACE certified courses across colleges within the institution to meet the ACE requirement and any course from outside the institution that is directly equivalent to a University of Nebraska–Lincoln ACE-certified course. Courses from outside institutions without direct equivalents may be considered with appropriate documentation for ACE credit (see academic advisor).

ACE allows faculty to assess and improve their effectiveness and facilitate students’ learning.

ACE Institutional Objectives and Student Learning Outcomes

To meet the ACE Program requirement, a student will complete a minimum of 3 credit hours for each of the ten ACE Student Learning Outcomes (a total of 30 ACE credit hours). See the ACE website at: http://ace.unl.edu for the most current information and the most recently certified courses.

Catalog Rule

Students must fulfill the requirements stated in the catalog for the academic year in which they are first admitted to and enrolled as a degree-seeking student at the University of Nebraska–Lincoln. In consultation with advisors, a student may choose to follow a subsequent catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at Nebraska in the College of Arts and Sciences. Students must complete all degree requirements from a single catalog year. Beginning in 1990-1991 the catalog which a student follows for degree requirements may not be more than 10 years old at the time of graduation.

Learning Outcomes

Majors in chemistry will be able to:

1. Explain basic chemical principles.
2. Perform calculations and data analyses to solve chemical problems.
3. Apply basic chemical principles to chemical systems.
4. Design chemical experiments to study chemical compounds and processes.
5. Employ laboratory techniques and instrumentation to perform chemical experiments.
6. Apply chemical hygiene and safety best practices.
7. Utilize computer-based tools to research and critically analyze chemical information.
8. Communicate integrated scientific knowledge and practice.
9. Secure entry into graduate programs, professional schools or professional positions that build upon the degree.

Major Requirements

Bachelor of Science

The bachelor of science (BS) program is recommended for students planning graduate studies or professional careers in chemistry and is also an excellent choice for pre-medicine.

Core Requirements

Career and Academic Planning

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101</td>
<td>Career Opportunities in Chemistry</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td>1</td>
</tr>
</tbody>
</table>

Fundamental Chemistry & Quantitative Analysis

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 113</td>
<td>Fundamental Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 114</td>
<td>Fundamental Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 221</td>
<td>Elementary Quantitative Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td>11</td>
</tr>
</tbody>
</table>

Organic Chemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 261</td>
<td>Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 262</td>
<td>Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 263</td>
<td>Organic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 264</td>
<td>Organic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td>10</td>
</tr>
</tbody>
</table>

Biochemistry or Chemical Biology

Select one sequence of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 431</td>
<td>Structure and Metabolism</td>
<td>5</td>
</tr>
<tr>
<td>& CHEM 433</td>
<td>and Biochemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 435</td>
<td>Chemical Biology</td>
<td>5</td>
</tr>
<tr>
<td>& CHEM 433</td>
<td>and Biochemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td>5</td>
</tr>
</tbody>
</table>

Physical Chemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 481</td>
<td>Physical Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 482</td>
<td>Physical Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 484</td>
<td>Physical Chemical Measurements</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td>11</td>
</tr>
</tbody>
</table>

Undergraduate Research

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 399</td>
<td>Undergraduate Research in Chemistry (at least 2 cr)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours:</td>
<td>40</td>
</tr>
</tbody>
</table>

Specific Major Requirements

Capstone

Select one sequence of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 421</td>
<td>Analytical Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>& CHEM 423</td>
<td>and Analytical Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 441</td>
<td>Inorganic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 443</td>
<td>and Inorganic Chemistry Laboratory</td>
<td></td>
</tr>
</tbody>
</table>
Credit Hours Subtotal: 5

Mathematics
MATH 106 Calculus I 5
MATH 107 Calculus II 4
MATH 208 Calculus III 4
Credit Hours Subtotal: 13

Physics
PHYS 211 General Physics I 4
PHYS 212 General Physics II 4
(With recommendations of PHYS 213 & PHYS 222)
Credit Hours Subtotal: 8

Total Credit Hours 26

Bachelor of Arts
The bachelor of arts (BA) program is designed for students needing undergraduate training in chemistry as preparation for professional careers outside of chemistry and fits easily into pre-medical, pre-pharmacy, pre-health, and pre-law degree programs.

Core Requirements
Career and Academic Planning
CHEM 101 Career Opportunities in Chemistry 1
Credit Hours Subtotal: 1

General Chemistry & Quantitative Analysis
CHEM 109 General Chemistry I 4
CHEM 110 General Chemistry II 4
CHEM 221 Elementary Quantitative Analysis 4
Credit Hours Subtotal: 12

Organic Chemistry
CHEM 251 Organic Chemistry I 4
& CHEM 253 and Organic Chemistry I Laboratory
CHEM 252 Organic Chemistry II 4
& CHEM 254 and Organic Chemistry II Laboratory
Credit Hours Subtotal: 8

Physical Chemistry
CHEM 471 Physical Chemistry 4
or CHEM 481 Physical Chemistry I 4
Credit Hours Subtotal: 4

Total Credit Hours 25

Specific Major Requirements
Capstone
Select two sequences of the following: 10

CHEM 421 Analytical Chemistry
& CHEM 423 and Analytical Chemistry Laboratory

CHEM 431 Structure and Metabolism
& CHEM 433 and Biochemistry Laboratory
or CHEM 432 Chemical Biology
& CHEM 433 and Biochemistry Laboratory

CHEM 441 Inorganic Chemistry
& CHEM 443 and Inorganic Chemistry Laboratory
Credit Hours Subtotal: 10

Mathematics
MATH 106 Calculus I 5
MATH 107 Calculus II 4
Credit Hours Subtotal: 9

Physics
PHYS 141 Elementary General Physics I 5
PHYS 142 Elementary General Physics II 5
Credit Hours Subtotal: 10

Total Credit Hours 29

NOTE: It is possible to transfer between the BS and BA programs despite the different sets of courses, but the student should visit the chemistry advisor to work out the details.

Additional Major Requirements
Grade Rules
C- and D Grades
A grade of C or above is required for all courses in the major, including any math or physics courses.

Pass/No Pass
No course taken Pass/No Pass will be counted toward the major with the exceptions of CHEM 101, CHEM 396, and/or CHEM 399.

Requirements for Minor Offered by Department
Plan A Minor (23-24 hours)
Completion of a chemistry sequence plus an additional twelve (12) hours of chemistry.

Select one sequence of the following: 11-12

CHEM 109 General Chemistry I
& CHEM 110 and General Chemistry II
& CHEM 221 and Elementary Quantitative Analysis

CHEM 113 Fundamental Chemistry I
& CHEM 114 and Fundamental Chemistry II
& CHEM 221 and Elementary Quantitative Analysis

Select an additional 12 hours of chemistry 1

Total Credit Hours 23-24

1 Excluding CHEM 101, CHEM 131, CHEM 195, CHEM 396, and CHEM 399.

Plan B Minor (19-20 hours)
Completion of a chemistry sequence plus an additional eight (8) hours of chemistry.

Select one sequence of the following: 11-12

CHEM 109 General Chemistry I
& CHEM 110 and General Chemistry II
& CHEM 221 and Elementary Quantitative Analysis

CHEM 113 Fundamental Chemistry I
& CHEM 114 and Fundamental Chemistry II
& CHEM 221 and Elementary Quantitative Analysis

Select an additional 8 hours of chemistry 1

Total Credit Hours 19-20

1 Excluding CHEM 101, CHEM 131, CHEM 195, CHEM 396, and CHEM 399.
Grade Rules

C- and D Grades
A grade of C or above is required for all courses in the minor.

Pass/No Pass
No course taken Pass/No Pass will be counted toward the minor.

CHEM 101 Career Opportunities in Chemistry
Description: Introduction to chemistry careers and faculty research interests in the Department of Chemistry. This course is required for all chemistry majors (B.S. and B.A.) but is open to all students interested in learning about the chemistry program and its relationship to careers.

Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC

CHEM 105 Chemistry in Context I
Prerequisites: MATH 101, or placement into MATH 102 or above.
Notes: Y
Description: The extraordinary chemistry of ordinary things. The chemical model of solids, liquids, gases, molecules, and salts. How these models are used to explore chemical aspects of biological, social, or economic situation.

Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: AGRO 327, HORT 327, TLMT 327; ASCI 240; CHEM 106; NRES 319

ACE: ACE 4 Science

CHEM 106 Chemistry in Context II
Prerequisites: CHEM 105
Notes: Y
Description: How organic chemistry and biochemistry complement one another. Chemical aspects of biological, social, or economic situations.

Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: ASCI 320

CHEM 109 General Chemistry I
Prerequisites: MATH 103 or a Math Placement Test score for MATH 104 or 106
Notes: Y
Description: Lecture and laboratory serving as an introduction to chemical reactions, the mole concept, properties of the states of matter, atomic structure, periodic properties, chemical bonding, and molecular structure.

Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: AGRO 327, HORT 327, TLMT 327; AGRO 455, AGRO 855, NRES 455, NRES 855, SOIL 455; ASCI 240; BIOM 205; BSEN 326, CIVE 326; BSEN 326H, CIVE 326H; CHEM 110; CHEM 191H; CHEM 192H; CHME 114; CHME 202; FDST 205; FDST 280; FORS 300; FORS 411; GEOG 210; GEOG 410; GEOG 418; GEOG 818, NRES 419, NRES 819, WATS 418; GEOG 418L, GEOG 818L, NRES 419L, NRES 819L, WATS 418L

ACE: ACE 4 Science

CHEM 110 General Chemistry II
Prerequisites: CHEM 109
Description: Lecture and laboratory serving as an introduction to intermolecular forces, kinetics, chemical equilibrium, thermodynamics, and electrochemistry.

Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: AGRO 455, AGRO 855, NRES 455, NRES 855, SOIL 455; ASCI 340; BSEN 244; BSEN 326, CIVE 326; BSEN 326H, CIVE 326H; BSEN 355; CHEM 221; CHEM 251; CHEM 255; CHEM 261; CHEM 291H; FDST 205; FORS 300; GEOG 418, GEOG 818, NRES 419, NRES 819, WATS 418; GEOG 418L, GEOG 818L, NRES 419L, NRES 819L, WATS 418L

ACE: ACE 4 Science

CHEM 111 Chemistry for Engineering and Technology
Prerequisites: Math Placement Test score for MATH 106.
Notes: Y
Description: A one semester introduction to the fundamentals of chemistry for engineering students.

Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: BSEN 326, CIVE 326, BSEN 326H, CIVE 326H; BSEN 355; CHEM 191H; CHEM 192H; CIVE 328; GEOG 418, GEOG 818, NRES 419, NRES 819, WATS 418; MATL 260; MATL 360

CHEM 113 Fundamental Chemistry I
Prerequisites: Math Placement Test score for MATH 106.
Notes: Y
Description: Fundamentals of chemistry for students in physical sciences or chemical engineering. Includes atomic and molecular structure, chemical bonding, states of matter, solutions, and acid-base reactions. Intended for students who plan to take upper-level courses in chemistry.

Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: BSEN 326, CIVE 326, BSEN 326H, CIVE 326H; CHEM 114; CHEM 192H; CHME 114; CHME 202; GEOG 410; GEOG 418, GEOG 818, NRES 419, NRES 819, WATS 418; GEOG 418L, GEOG 818L, NRES 419L, NRES 819L, WATS 418L

ACE: ACE 4 Science

CHEM 114 Fundamental Chemistry II
Prerequisites: CHEM 113.
Notes: Y
Description: Chemical kinetics, oxidation-reduction reactions and electrochemistry, ionic solution equilibria, thermodynamic concepts, and chemistry of selected elements.

Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: BSEN 244; BSEN 355; CHEM 251; CHEM 255; CHEM 261; CHEM 291H; GEOG 418, GEOG 818, NRES 419, NRES 819, WATS 418; GEOG 418L, GEOG 818L, NRES 419L, NRES 819L, WATS 418L
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Format</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 131</td>
<td>The Science of Food</td>
<td>Crosslisted with: FDST 131, NUTR 131</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: General scientific concepts in biology, chemistry, and physics using food as a model. What food is from both chemical and nutritional perspectives, and the fate of food from when it leaves the farm to when it becomes a part of the individual. Assists students in making intelligent decisions about many food related controversial issues (e.g., food irradiation, food additives, health foods).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3</td>
<td>Max credits per semester: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 3</td>
<td>Format: LEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite for: FDST 131L; FDST 205; FDST 280; FDST 301</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACE: ACE 4 Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 191H</td>
<td>Freshman Honors Chemistry I</td>
<td>Prerequisites: Freshman standing; Good standing in the University Honors Program; CHEM 109, 111 or 113 parallel.</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Seminar in which special topics in chemistry are taught at a level appropriate for the student population.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 1</td>
<td>Max credits per semester: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 1</td>
<td>Format: LEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 192H</td>
<td>Freshman Honors Chemistry II</td>
<td>Prerequisites: Freshman standing; Good standing in the University Honors Program; CHEM 109, 111 or 113 parallel.</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Seminar in which special topics in chemistry are taught at a level appropriate for the student population.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 1</td>
<td>Max credits per semester: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 1</td>
<td>Format: LEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 195</td>
<td>Today's Chemistry in Education</td>
<td>Description: Interactive, practical approach to learning chemistry and its relationship to today's world. Intended for elementary and middle-level education majors. Uses the Operation Chemistry model to help students learn the essential chemistry content and teaching practices for elementary-level classrooms.</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3</td>
<td>Max credits per semester: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 3</td>
<td>Format: LEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 221</td>
<td>Elementary Quantitative Analysis</td>
<td>Prerequisites: CHEM 110 or parallel CHEM 114</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: Y</td>
<td>Description: Introduction to principles of quantitative analytical chemistry, including ionic equilibria and solution stoichiometry. Lab instruction includes titrimetry, gravimetry, separations, and use of pH meter and spectrophotometer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 4</td>
<td>Max credits per semester: 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 4</td>
<td>Format: LEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite for: AGRO 455, AGRO 855, NRES 455, NRES 855, SOIL 455; CHEM 292H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 251</td>
<td>Organic Chemistry I</td>
<td>Prerequisites: CHEM 110 or 114 with a minimum grade of C.</td>
<td>LEC</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Notes: Y</td>
<td>Description: Chemistry of carbon compounds. Applications to the biological sciences, agriculture and pre-professional programs including premedical and pre-dental. Emphasizes basic principles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3</td>
<td>Max credits per semester: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 3</td>
<td>Format: LEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite for: AGRO 455, AGRO 855, NRES 455, NRES 855, SOIL 455; ASCI 320; BIOL 321; BIOS 302; BIOS 312; BIOS 313; BIOS 314; BIOS 326; BIOS 443, BIOS 843, VBMS 843, MBIO 443; CHEM 252; CHEM 253; CHEM 254; CHEM 292H; VBMS 403</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 252</td>
<td>Organic Chemistry II</td>
<td>Prerequisites: CHEM 251 and 253.</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: Y</td>
<td>Description: Chemistry of carbonyl compounds. Aspects of aromatic chemistry, heterocycles, carbohydrates and nitrogen compounds, with some emphasis on the organic compounds found in nature.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3</td>
<td>Max credits per semester: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 3</td>
<td>Format: LEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite for: CHEM 254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 253</td>
<td>Organic Chemistry I Laboratory</td>
<td>Prerequisites: CHEM 251 or parallel.</td>
<td>LAB</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Notes: Y</td>
<td>Description: Basic techniques of organic chemistry. Structure, identification, physical properties of compounds, molecular modeling, and introduction to the spectroscopic characteristics of organic compounds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 1</td>
<td>Max credits per semester: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 1</td>
<td>Format: LEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite for: CHEM 252; CHEM 254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 254</td>
<td>Organic Chemistry II Laboratory</td>
<td>Prerequisites: CHEM 251, 253; CHEM 252 or parallel.</td>
<td>LEC</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Notes: Y</td>
<td>Description: Synthesis of representative organic compounds. Qualitative analysis of organic compounds. Naturally occurring compounds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 1</td>
<td>Max credits per semester: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 1</td>
<td>Format: LEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite for: CHEM 251, 253; CHEM 252 or parallel.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 255</td>
<td>Biological Organic Chemistry</td>
<td>Prerequisites: CHEM 110 or 114</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: Y</td>
<td>Description: One-semester organic chemistry course in which biological molecules and biochemical reactions will be used to explain and illustrate the central concepts of organic chemistry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Hours: 3</td>
<td>Max credits per semester: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max credits per degree: 3</td>
<td>Format: LEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite for: BIOL 321; BIOS 302; BIOS 312; BIOS 313; BIOS 314; BIOS 326; BIOS 443, BIOS 843, VBMS 843, MBIO 443</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHEM 257 Biological Organic Chemistry Laboratory
Prerequisites: CHEM 255 or concurrent
Description: Basic techniques in organic chemistry with a focus on biomolecules. Structure, identification, and physical properties of compounds, accompanied with molecular modeling and introduction to spectroscopy.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LAB

CHEM 261 Organic Chemistry
Prerequisites: CHEM 110 or 114 with minimum grades of C.
Notes: Y
Description: CHEM 261 and 262, together with lab courses 263 and 264, form a continuous basic course covering the important compounds of carbon.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: BIOS 302; BIOS 312; BIOS 313; BIOS 314; BIOS 326; BIOS 443, BIOS 843, VBMS 843, Mbio 443; CHEM 262; CHEM 263; CHEM 263A; CHEM 292H

CHEM 262 Organic Chemistry
Prerequisites: CHEM 261
Notes: Y
Description: Continuation of CHEM 261.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CHEM 264; CHEM 264A; CHME 482, CHME 882

CHEM 263 Organic Chemistry Laboratory
Prerequisites: CHEM 261 or parallel.
Notes: Y
Description: Students following the professional curriculum in chemistry should elect this course.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LEC
Prerequisite for: CHEM 264; CHEM 264A

CHEM 263A Organic Chemistry Laboratory
Prerequisites: CHEM 261 or parallel.
Notes: Y
Description: Students having credit in CHEM 251 and CHEM 253 or its equivalent should elect this course.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC
Prerequisite for: CHEM 264A

CHEM 264 Organic Chemistry Laboratory
Prerequisites: CHEM 262 or parallel; CHEM 263.
Notes: Y
Description: Continuation of CHEM 263. Lab work in qualitative organic analysis.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LAB
Prerequisite for: CHME 482, CHME 882

CHEM 264A Organic Chemistry Laboratory
Prerequisites: CHEM 262 or parallel; CHEM 263 or CHEM 263A.
Notes: Y
Description: Continuation of CHEM 263A.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC

CHEM 291H Honors: Sophomore Chemistry I
Prerequisites: Sophomore standing; Good standing in the University Honors Program; CHEM 110 or 114 with a minimum grade of "B"; CHEM 221 or 251 or 261 parallel.
Description: Seminar in which special topics in chemistry are taught at a level appropriate for the student population.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC

CHEM 292H Honors: Sophomore Chemistry II
Prerequisites: Good standing in the University Honors Program; CHEM 221 or 251 or 261 with a minimum grade of "B"; CHEM 251 or 252 or 262 parallel.
Description: Seminar in which special topics in chemistry are taught at a level appropriate for the student population.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC

CHEM 396 Independent Study
Credit Hours: 1-12
Min credits per semester: 1
Max credits per semester: 12
Max credits per degree: 12
Format: IND

CHEM 399 Undergraduate Research in Chemistry
Prerequisites: Permission.
Description: Open to undergraduates desiring to undertake a special research project under the direction of a member of the departmental faculty. The grade will be awarded following the submission of a written progress and/or final report.
Credit Hours: 1-12
Min credits per semester: 1
Max credits per semester: 12
Max credits per degree: 12
Format: IND
CHEM 421 Analytical Chemistry
Crosslisted with: CHEM 821
Prerequisites: CHEM 471/871 or CHEM 481/881; parallel CHEM 423/823
Description: Chemical and physical properties applied to quantitative chemical analysis. Solution equilibria, stoichiometry, and instrumental theory and techniques.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CHEM 423, CHEM 823; CHEM 824; CHEM 825A; CHEM 825B; CHEM 825D; CHEM 825E; CHEM 825G; CHEM 825J; CHEM 991A
ACE: ACE 10 Integrated Product
CHEM 423 Analytical Chemistry Laboratory
Crosslisted with: CHEM 823
Prerequisites: CHEM 421/821 or parallel.
Notes: Y
Description: Lab designed to accompany CHEM 421/821. Applications of analytical chemical principles to laboratory problems.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LEC
Prerequisite for: CHEM 421, CHEM 821
CHEM 431 Structure and Metabolism
Crosslisted with: BIOC 431, BIOS 431, BIOC 831, BIOS 831, CHEM 831
Prerequisites: LIFE 120 with a grade of C or better; CHEM 252 or CHEM 252 with a grade of C or better.
Notes: Y
Description: Structure and function of proteins, nucleic acids, carbohydrates and lipids; nature of enzymes; major metabolic pathways of catabolism; and biochemical energy production.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL/SPR
Prerequisite for: AGRO 434, BIOC 434, BIOS 434, AGRO 834, BIOS 834, CHEM 834
CHEM 432 Metabolism and Biological Information
Crosslisted with: BIOC 432, BIOS 432, CHEM 832, BIOS 832
Prerequisites: BIOL 431/831 with a grade of C or better; BIOS 206 or AGRO 215 with a grade of C or better.
Notes: Y
Description: Major metabolic pathways of anabolism, structural and biochemical aspects of biological information flow and use in biotechnology.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: ASCI 949, BIOC 949, BIOS 949, BIOC 435; BIOC 932, BIOS 932, CHEM 933; BIOC 934, BIOS 934, CHEM 935; BIOC 935, BIOS 935, CHEM 935; BIOC 992K, CHEM 992K; BIOC 998; BIOS 950, VBMS 950; VBMS 919; VBMS 951
CHEM 433 Biochemistry Laboratory
Crosslisted with: BIOC 433, BIOS 433, CHEM 833
Prerequisites: BIOC 431/831 with a grade of C or better; BIOS 206 or AGRO 215.
Description: Introduction to techniques used in biochemical and biotechnology research, including measurement of pH, spectroscopy, analysis of enzymes, chromatography, fractionation of macromolecules, electrophoresis, and centrifugation.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LEC
Offered: FALL/SPR
Prerequisite for: BIOC 437, BIOS 437, BIOS 837; BIOC 898; CHEM 498
CHEM 434 Plant Biochemistry
Crosslisted with: AGRO 434, BIOC 434, BIOS 434, AGRO 834, BIOS 834, CHEM 834
Prerequisites: BIOC/BIO/CHEM 431/831.
Description: Biochemical metabolism unique to plants. Relationships of topics previously acquired in general biochemistry to biochemical processes unique to plants. Biochemical mechanisms behind physiological processes discussed in plant or crop physiology.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
CHEM 435 Chemical Biology
Crosslisted with: CHEM 835
Prerequisites: CHEM 252 or 262, and CHEM 221
Notes: Y
Description: Fundamentals of chemical biology with an emphasis on the underlying principles of biomolecular structures, macromolecular-small molecule interactions, including mechanistic aspects of enzymes and cofactors, use of modified enzymes to alter biochemical pathways, and the use of chemical tools for understanding biological processes.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: BIOC 433, BIOS 833, BIOS 833, CHEM 433, CHEM 833
CHEM 441 Inorganic Chemistry
Crosslisted with: CHEM 841
Prerequisites: CHEM 221 with a minimum grade of C; CHEM 252 or 262.
Notes: Y
Description: CHEM 441/841 and the accompanying lab course, CHEM 443/843, constitute a basic course in inorganic chemistry. Structure, bonding, properties, and reactions of inorganic compounds with emphasis on the relationships and trends that are embodied in the periodic table of the elements.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: CHEM 421, CHEM 821; CHEM 845
ACE: ACE 10 Integrated Product

CHEM 443 Inorganic Chemistry Laboratory
Crosslisted with: CHEM 843
Prerequisites: CHEM 441 or parallel.
Notes: Y
Description: Introduction to typical inorganic chemistry laboratory techniques through the preparation and characterization of inorganic compounds.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LEC
Prerequisite for: CHEM 845

CHEM 463 Advanced Organic Preparations
Crosslisted with: CHEM 863
Prerequisites: CHEM 252 and CHEM 254.
Notes: Y
Credit Hours: 1-5
Min credits per semester: 1
Max credits per semester: 5
Max credits per degree: 5
Format: LAB

CHEM 471 Physical Chemistry
Crosslisted with: CHEM 871
Prerequisites: CHEM 221; MATH 107; and PHYS 142 or 212.
Notes: Y
Description: Conceptual and mathematical foundations of classical and statistical thermodynamics. Applications of thermodynamics to phase and chemical equilibria. Thermodynamics of solutions of small molecules and of polymers. Biological applications of thermodynamics. Introduction to chemical and biochemical spectroscopy.
Credit Hours: 4
Max credits per semester: 3
Max credits per degree: 4
Format: LEC
Prerequisite for: BIOC 486, BIOC 886, BIOS 486, BIOS 886, CHEM 486, CHEM 886; CHEM 421, CHEM 821

CHEM 481 Physical Chemistry I
Crosslisted with: CHEM 881
Prerequisites: CHEM 221 with grade of at least C; MATH 208; PHYS 212.
Notes: Y
Description: CHEM 481/881 and 482/882 with accompanying lab 484/884 form a continuous basic course in physical chemistry for students interested in chemistry as a profession. Introduction to quantum mechanics and statistical mechanics; application to problems in atomic and molecular structure and to spectroscopy.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: BIOC 486, BIOC 886, BIOS 486, BIOS 886, CHEM 486, CHEM 886; CHEM 482, CHEM 882; CHEM 484, CHEM 884; CHEM 484A, CHEM 884A; CHEM 991 J; PHYS 422, PHYS 822, ECEN 422, ECEN 822

CHEM 482 Physical Chemistry II
Crosslisted with: CHEM 882
Prerequisites: CHEM 481/881
Notes: Y
Description: Thermodynamics and statistical mechanics and their application to the study of solids, liquids, gases, solutions, phase equilibria, and chemical equilibria. Chemical kinetics and reaction dynamics.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: CHEM 484, CHEM 884; CHEM 484A, CHEM 884A; CHEM 845; CHEM 987 A; CHEM 987 B; CHEM 991 J; CHME 925

CHEM 484 Physical Chemical Measurements
Crosslisted with: CHEM 884
Prerequisites: CHEM 481/881; CHEM 482/882 or parallel.
Notes: Y
Description: Applications of physical measurements and principles to study chemical systems and processes.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
CHEM 484A Physical Chemical Measurements
Crosslisted with: CHEM 884A
Prerequisites: CHEM 481/881; CHEM 482/882 or parallel.
Notes: Y
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LEC

CHEM 486 Advanced Topics in Biophysical Chemistry
Crosslisted with: BIOC 486, BIOC 886, BIOS 486, BIOS 886, CHEM 486, CHEM 886
Prerequisites: CHEM 471/871 or CHEM 481/881.
Description: Applications of thermodynamics to biochemical phenomena, optical properties of proteins and polynucleotides, and kinetics of rapid reactions.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
CHEM 498 Undergraduate Research
Prerequisites: BIOC 433 and permission
Description: Research on a specific biochemical project under the supervision of a biological chemistry faculty member.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Format: LEC

PLEASE NOTE
This document represents a sample 4-year plan for degree completion with this major. Actual course selection and sequence may vary and should be discussed individually with your college or department academic advisor. Advisors also can help you plan other experiences to enrich your undergraduate education such as internships, education abroad, undergraduate research, learning communities, and service learning and community-based learning.

Chemistry (B.A.)
Chemistry (B.S.)

Career Information
The following represents a sample of the internships, jobs and graduate school programs that current students and recent graduates have reported.

Transferable Skills
- Design and implement research experiments
- Understand and practice proper laboratory safety procedures
- Read, understand, and critically review scientific information
- Define problems and identifying causes
- Comprehend and critically evaluate complex information
- Compose convincing arguments and present logical information
- Confidently navigate complex, ambiguous projects and environments
- Demonstrate ethical conduct in research activities
- Document and replicate processes and procedures

Jobs of Recent Graduates
- Product Associate, LI-COR Biosciences - Lincoln NE
- Associate Scientist I, Teva Pharmaceutical - Salt Lake City UT
- Principle Scientist 1, Novartis - Lincoln NE
- Pharmacy Intern I, Methodist Women's Hospital - Omaha NE
- Chemistry Lab Technician, Arkansas State University - Jonesboro AR
- Technical Services, Epic Systems Corporation - Madison WI
- Chemical Contractor, Zoetis - Lincoln NE
- Quality Management Chemist, Cargill - Blair NE
- Chemical Analyst, Purac America - Lincolnshire IL
- Civilian Scientist, United States Navy - China Lake CA
- Patent Agent, Suiter Swantz - Omaha NE
- Quality Team Member, Ardent Mills - Ogden UT
- Quality Tech, Cargill - Lake City MN
- Laboratory Technician, Enthone - Bridgeview IL
- Scientist, Celerion - Lincoln NE

Internships
- Intern, Colorado Bureau of Investigation - Denver CO
- Research and Development Intern, Gelita - Sergeant Bluff IA
- Distinguished Life Sciences Scholar, Beckman/Distinguished Life Sciences Scholars - Lincoln NE
- Commercialization Analyst Intern, NUtech Ventures - Lincoln NE

Graduate & Professional Schools
- Doctor of Dental Surgery, University of Nebraska Medical Center College of Dentistry - Lincoln NE
- Master's Degree, Chemistry, University of Nebraska-Lincoln - Lincoln NE
- Doctor of Pharmacy, University of Nebraska Medical Center - Omaha NE
- Ph.D., Chemistry, University of Nebraska-Lincoln - Lincoln NE
- Medical Doctor, University of Nebraska Medical Center - Omaha NE
- Ph.D., Organic Chemistry, University of California-Riverside - Riverside CA
- Doctor of Optometry, Southern College of Optometry - Memphis TN
- Master's Degree, Molecular Genetics, Ohio State University - Columbus OH
- Ph.D., Analytical Chemistry, Ohio State University - Colombus OH
- Doctor of Physical Therapy , Missouri State University - Springfield MO
- Master's Degree, Science Teaching, University of Nebraska-Lincoln - Lincoln NE
- Medical Doctor, University of Nebraska Medical Center - Omaha NE
- Doctor of Pharmacy, University of Nebraska Medical Center - Omaha NE