CHEMISTRY

Description
Chemistry deals with the analysis, structure, properties, and synthesis of matter ranging in size from single atoms to biologically-active small molecules to DNA and proteins. A degree in chemistry prepares students for many career options: industry (research, analysis, production), teaching, graduate studies, or professional schools. Chemistry is also a valuable second major for students completing degrees in a number of science, math, or engineering disciplines.

Laboratory Fee and Deposit. Students who enroll in chemistry laboratory courses pay a special fee to defray the cost of materials and equipment. The special fee is applied to tuition in the amounts given in the Office of the University Registrar’s website at registrar.unl.edu (http://registrar.unl.edu).

Breakage Costs. Glassware and equipment that are lost or damaged by the student are charged to the student’s N-card for 200-level, 300-level, and 400-level classes.

Program Assessment. In order to assist the department in evaluating the effectiveness of its programs, majors will be required in their senior year:
1. To take a standardized chemistry exam during their final year in the program. It will be administered toward the end of their final semester at a time that all graduating students can attend.
2. To participate in an exit interview with a designated faculty member.
3. To submit a copy of the report written for CHEM 398 Undergraduate Research in Chemistry to the departmental office for evaluation.

The vice-chair will inform students of the scheduling and format of assessment activities. Results of participation in these assessment activities will in no way affect a student’s GPA or graduation.

College Admission
The entrance requirements for the College of Arts and Sciences (CAS), including any of the majors or minors offered through the college, are the same as the University of Nebraska–Lincoln General Admission Requirements. In addition to these requirements, the College of Arts and Sciences strongly recommends a third and fourth year of one foreign language in high school. Four years of high school coursework in the same language will fulfill the College of Arts and Sciences’ language requirement. It will also allow students to continue language study at a more advanced level at the University of Nebraska–Lincoln and provide more opportunity to study abroad.

ACADEMIC AND CAREER Advising Center
The Academic and Career Advising Center in 107 Oldfather Hall is the undergraduate hub for CAS students in all majors. Centrally located and easily accessed, students encounter friendly, knowledgeable people who are eager to help. Students visit the Advising Center in 107 Oldfather Hall to:

- Choose or change their major, minor, or degree program.
- Check in on policies, procedures, and deadlines.
- Get a college approval signature from the Dean’s representative, Sr. Director of Advising and Student Success.

While the assigned academic advisor should be the student’s primary contact, there are daily walk-ins from 12-3 where a general academic advisor can answer a quick question. In addition, the CAS Career Coaches are located here. They help students explore majors and minors, gain experience, and develop a plan for life after graduation. Not sure where to go or who to ask? The Advising Center team can help.

Assigned Academic Advisors
Academic advisors are critical resources dedicated to students’ academic, personal, and professional success. Every CAS student is assigned an academic advisor based on their primary major. Since most CAS students have more than just a single major, it is important to get to know the advisor for any minors or additional majors. Academic advisors work closely with the faculty to provide the best overall support and discipline-specific expertise.

Assigned advisors are listed in MyRED (https://its.unl.edu/myunl/) and their offices may be located in or near the department of the major for which they advise or in the Academic and Career Advising Center. Students who have declared a pre-health or pre-law area of interest will also work with advisors in the Exploratory and Pre-Professional Advising Center (Explore Center) in 127 Love South, who are specially trained to guide students preparing to enter a professional school.

For complete and current information on advisors for majors, minors, or pre-professional areas, contact the Arts and Sciences Academic and Career Advising Center, 107 Oldfather Hall, 402-472-4190, http://cas.unl.edu/advising (http://cas.unl.edu/advising/).

Career Coaching
The College believes that Academics + Experience = Opportunities and encourages students to complement their academic preparation with real-world experience, including internships, research, education abroad, service, and leadership. Arts and sciences students have access to a powerful network of faculty, staff, and advisors dedicated to providing information and support for their goals of meaningful employment or advanced education. Arts and sciences graduates have unlimited career possibilities and carry with them important career competencies—communication, critical thinking, creativity, context, and collaboration. They have the skills and adaptability that employers universally value. Graduates are not only prepared to effectively contribute professionally in the real world, but they have a solid foundation to excel in an increasingly global, technological, and interdisciplinary world.

Students should contact the career coaches in the Arts and Sciences Academic and Career Advising Center in 107 Oldfather, or their assigned advisor, for more information. The CAS career coaches help students explore career options, identify ways to build experience, and prepare to apply for internships, jobs, or graduate school, including help with resumes, applications, and interviewing.

ACE Requirements
Students must complete one course for each of the ACE Student Learning Outcomes below. Certified course choices are published in the degree audit, or visit the ACE website (http://ace.unl.edu) for the most current list of certified courses.

1. Breakage Costs.
2. Program Assessment.
3. College Admission.
4. Academic and Career Advising Center.
5. ACE Requirements.
ACE Student Learning Outcomes

ACE 1: Write texts, in various forms, with an identified purpose, that respond to specific audience needs, integrate research or existing knowledge, and use applicable documentation and appropriate conventions of format and structure.

ACE 2: Demonstrate competence in communication skills.

ACE 3: Use mathematical, computational, statistical, logical, or other formal reasoning to solve problems, draw inferences, justify conclusions, and determine reasonableness.

ACE 4: Use scientific methods and knowledge to pose questions, frame hypotheses, interpret data, and evaluate whether conclusions about the natural and physical world are reasonable.

ACE 5: Use knowledge, historical perspectives, analysis, interpretation, critical evaluation, and the standards of evidence appropriate to the humanities to address problems and issues.

ACE 6: Use knowledge, theories, and research perspectives such as statistical methods or observational accounts appropriate to the social sciences to understand and evaluate social systems or human behaviors.

ACE 7: Use knowledge, theories, or methods appropriate to the arts to understand their context and significance.

ACE 8: Use knowledge, theories, and analysis to explain ethical principles and their importance in society.

ACE 9: Exhibit global awareness or knowledge of human diversity through analysis of an issue.

ACE 10: Generate a creative or scholarly product that requires broad knowledge, appropriate technical proficiency, information collection, synthesis, interpretation, presentation, and reflection.

College Degree Requirements

College Distribution Requirements – BA and BS

The College of Arts and Sciences distribution requirements are common to both the bachelor of arts and bachelor of science degrees and are designed to ensure a range of courses. By engaging in study in several different areas within the College, students develop the ability to learn in a variety of ways and apply their knowledge from a variety of perspectives. All requirements are in addition to University ACE requirements, and no course can be used to fulfill both an ACE outcome and a College Distribution Requirement.

- A student may not use a single course to satisfy more than one College Distribution Requirement, with the exception of CDR Diversity. Courses used to meet CDR Diversity may also meet CDR Writing, CDR Humanities, or CDR Social Science.
- Independent study or reading courses and internships cannot be used to satisfy distribution requirements.
- Courses from interdisciplinary programs will be applied in the same area as courses from the home/cross-listed department.

College Distribution Requirements

CDR: Written Communication
3

Select from courses approved for ACE outcome 1.

CDR: Natural, Physical, and Mathematical Sciences with Lab
4

Select from biochemistry, biological sciences, chemistry, computer science, geology, meteorology, mathematics, and physics. Must include one lab in the natural or physical sciences. Lab courses may be selected from biochemistry, biological sciences, chemistry, geology, meteorology, and physics.

Some courses from geography and anthropology may also be used to satisfy the lab requirement above.

CDR: Humanities

Select from classics, English, history, modern languages and literatures, philosophy, and religious studies.

CDR: Social Science

Select from anthropology, communication studies, geography, political science, psychology, or sociology.

CDR: Human Diversity in U.S. Communities
0-3

Select from a set of approved courses as listed in the degree audit.

CDR: Language
0-16

Fulfilled by the completion of the 6-credit-hour second-year sequence in a single foreign language in one of the following departments: Classics and religious studies or modern languages and literatures. Instruction is currently available in Arabic, Chinese, Czech, French, German, Greek, Japanese, Latin, Russian, and Spanish.

A student who has completed the fourth-year level of one foreign language in high school is exempt from the languages requirement, but encouraged to continue on in their language study.

Credit Hours Subtotal: 13-32

1 See Degree Audit or a College of Arts and Sciences advisor for approved geography and anthropology courses that apply as natural science.

2 Language courses numbered 220 and below do not fulfill the CDR Humanities.

3 See Degree Audit or College of Arts and Sciences advisor for list of natural/physical science courses in anthropology, geography, and psychology that do not apply as social science.

Language Requirement

The University of Nebraska–Lincoln and the College of Arts and Sciences place great value on academic exposure and proficiency in a second language. The University of Nebraska–Lincoln entrance requirement of two years of the same foreign language or the College’s language distribution requirement (CDR: Language) will rarely be waived and only with relevant documentation. See the main College of Arts and Sciences page for more details.

Scientific Base - BS Only

The bachelor of science degree requires students to complete 60 hours in mathematical, physical, and natural sciences. Approved courses for scientific base credit come from the following College of Arts and Sciences disciplines: actuarial science, anthropology (selected courses), astronomy, biochemistry (excluding BIOC 101), biological sciences (excluding BIOS 100 or BIOS 203), chemistry (excluding CHEM 101), computer science (excluding CSCE 10), geography (selected courses), geology, life sciences, mathematics (excluding courses below MATH 104), meteorology, microbiology (excluding MBIO 101), and physics.
See your Degree Audit or your assigned academic advisor for a complete list, including individual classes that fall outside of the disciplines listed above. Up to 12 hours of scientific and technical courses offered by other colleges may be accepted toward this requirement with the approval of the College of Arts and Sciences. See your assigned academic advisor to start the approval process.

Minimum Hours Required for Graduation

A minimum of 120 semester hours of credit is required for graduation from the College of Arts and Sciences. A cumulative grade point average of at least 2.0 is required.

Grade Rules

Restrictions on C- and D Grades

The College will accept no more than 15 semester hours of C- and D grades from other domestic institutions except for UNO and UNK. All courses taken at UNO and UNK impact the UNL transcript. No transfer of C- and D grades can be applied toward requirements in a major or a minor. No University of Nebraska—Lincoln C- and D grades can be applied toward requirements in a major or a minor. International coursework (including education abroad) with a final grade equivalent to a C- or lower will not be validated by the College of Arts and Sciences departments to be degree applicable.

Pass/No Pass Privilege

The College of Arts and Sciences adheres to the University regulations for the Pass/No Pass (P/N) privilege with the following additional regulations:

- Pass/No Pass hours can count toward fulfillment of University ACE requirements and college distribution requirements up to the 24-hour maximum.
- Most arts and sciences departments and programs do not allow courses graded Pass/No Pass to apply to the major or minor. Students should refer to the department’s or program’s section of the catalog for clarification. By college rule, departments can allow up to 6 hours of Pass/No Pass in the major or minor.
- Departments may specify that certain courses of theirs can be taken only on a P/N basis.
- The college will permit no more than a total of 24 semester hours of P/N grades to be applied toward degree requirements. This total includes all Pass grades earned at the University of Nebraska—Lincoln and other U.S. schools. **NOTE:** This 24-hour limit is more restrictive than the University regulation.

Grading Appeals

A student who feels that he/she has been unfairly graded must ordinarily take the following sequential steps in a timely manner, usually by initiating the appeal in the semester following the awarding of the grade:

1. Talk with the instructor concerned. Most problems are resolved at this point.
2. Talk to the instructor’s department chairperson.
3. Take the case to the Grading Appeal Committee of the department concerned. The Committee should be contacted through the department chairperson.
4. Take the case to the College Grading Appeals Committee by contacting the Dean’s Office, 1223 Oldfather Hall.

Course Level Requirements

Courses Numbered at the 300 or 400 Level

Thirty (30) of the 120 semester hours of credit must be in courses numbered at the 300 or 400 level. Of those 30 hours, 15 hours (1/2) must be completed in residence at the University of Nebraska—Lincoln.

Residency Requirement

Students must complete at least 30 of the 120 total hours for their degree at the University of Nebraska—Lincoln. Students must complete at least 1/2 of their major coursework, including 6 hours at the 300 or 400 level in their major and 15 of the 30 hours required at the 300 or 400 level, in residence. Credit earned during education abroad may be used toward the residency requirement only if students register through the University of Nebraska—Lincoln.

Catalog to Use

Students must fulfill the requirements stated in the catalog for the academic year in which they are first admitted to and enrolled as a degree-seeking student at the University of Nebraska—Lincoln. In consultation with advisors, a student may choose to follow a subsequent catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at the University of Nebraska—Lincoln in the College of Arts and Sciences. Students must complete all degree requirements from a single catalog year. Beginning in 1990-1991, the catalog which a student follows for degree requirements may not be more than 10 years old at the time of graduation.

Learning Outcomes

Graduates of chemistry will be able to:

1. Explain basic chemical principles.
2. Perform calculations and data analyses to solve chemical problems.
3. Apply basic chemical principles to chemical systems.
4. Design chemical experiments to study chemical compounds and processes.
5. Employ laboratory techniques and instrumentation to perform chemical experiments.
6. Apply chemical hygiene and safety best practices.
7. Utilize computer-based tools to research and critically analyze chemical information.
8. Communicate integrated scientific knowledge and practice.
9. Secure entry into graduate programs, professional schools, or professional positions that build upon the degree.

Major Requirements

Bachelor of Science

The bachelor of science (BS) program is recommended for students planning graduate studies or professional careers in chemistry and is also an excellent choice for pre-medicine.

Core Requirements

Career and Academic Planning

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101</td>
<td>Career Opportunities in Chemistry</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Credit Hours Subtotal:</td>
<td>1</td>
</tr>
</tbody>
</table>

Fundamental Chemistry & Quantitative Analysis

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 113A</td>
<td>Fundamental Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>& CHEM 113L</td>
<td>and Fundamental Chemistry I Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

Chemistry
Bachelor of Arts

The bachelor of arts (BA) program is designed for students needing undergraduate training in chemistry as preparation for professional careers outside of chemistry and fits easily into pre-medical, pre-pharmacy, pre-health, and pre-law degree programs.

Core Requirements

Career and Academic Planning
CHEM 101 Career Opportunities in Chemistry 1
Credit Hours Subtotal: 1

General Chemistry & Quantitative Analysis
CHEM 109A General Chemistry I 4
& CHEM 109L and General Chemistry I Laboratory 4
CHEM 110A General Chemistry II 4
& CHEM 110L and General Chemistry II Laboratory 4
CHEM 221 Elementary Quantitative Analysis 4
Credit Hours Subtotal: 12

Organic Chemistry
CHEM 251 Organic Chemistry I 4
& CHEM 253 and Organic Chemistry I Laboratory 4
CHEM 252 Organic Chemistry II 4
& CHEM 254 and Organic Chemistry II Laboratory 4
Credit Hours Subtotal: 8

Physical Chemistry
CHEM 471 Physical Chemistry 4
or CHEM 481 Physical Chemistry I 4
Credit Hours Subtotal: 4

Capstone
Select two sequences of the following: 10
CHEM 421 Analytical Chemistry 5
& CHEM 423 and Analytical Chemistry Laboratory 5
CHEM 441 Inorganic Chemistry 4
& CHEM 443 and Inorganic Chemistry Laboratory 4
CheM 431 / BIOC 431 / BIOS 431 & CHEM 433 / BIOC 433 / BIOS 433
Biochemistry I: Structure and Metabolism and Biochemistry Laboratory
& CHEM 435 Chemical Biology 4
& CHEM 437 and Chemical Biology Laboratory 4

Ancillary Requirements

Mathematics
MATH 106 Calculus I 5
MATH 107 Calculus II 4
MATH 208 Calculus III 4
Credit Hours Subtotal: 13

Physics
PHYS 211 General Physics I 4
PHYS 212 General Physics II 4
(With recommendations of PHYS 221 & PHYS 222)
Credit Hours Subtotal: 8

Total Credit Hours 45
Additional Major Requirements

Grade Rules

C- and D Grades
A grade of C or above is required for all courses in the major, including ancillary courses.

Pass/No Pass
No course taken Pass/No Pass will be counted toward the major with the exceptions of CHEM 101, CHEM 396 or CHEM 398.

Requirements for Minor Offered by Department

Plan A Minor (23-24 hours)
Completion of a chemistry sequence plus an additional twelve (12) hours of chemistry.

Select one sequence from the following:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 109A General Chemistry I & CHEM 109L and General Chemistry I Laboratory</td>
<td>11-12</td>
</tr>
<tr>
<td>& CHEM 110A and General Chemistry II</td>
<td></td>
</tr>
<tr>
<td>& CHEM 110L and General Chemistry II Laboratory</td>
<td></td>
</tr>
<tr>
<td>& CHEM 221 and Elementary Quantitative Analysis</td>
<td></td>
</tr>
<tr>
<td>CHEM 113A Fundamental Chemistry I & CHEM 113L and Fundamental Chemistry I Laboratory</td>
<td></td>
</tr>
<tr>
<td>& CHEM 114 and Fundamental Chemistry II</td>
<td></td>
</tr>
<tr>
<td>& CHEM 221 and Elementary Quantitative Analysis</td>
<td></td>
</tr>
</tbody>
</table>

Select an additional 12 hours of chemistry

Total Credit Hours: 23-24

Excluding CHEM 101, CHEM 131, CHEM 396, CHEM 398, CHEM 499, or CHEM 499H.

Plan B Minor (19-20 hours)
Completion of a chemistry sequence plus an additional eight (8) hours of chemistry.

Select one sequence from the following:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 109A General Chemistry I & CHEM 109L and General Chemistry I Laboratory</td>
<td>11-12</td>
</tr>
<tr>
<td>& CHEM 110A and General Chemistry II</td>
<td></td>
</tr>
<tr>
<td>& CHEM 110L and General Chemistry II Laboratory</td>
<td></td>
</tr>
<tr>
<td>& CHEM 221 and Elementary Quantitative Analysis</td>
<td></td>
</tr>
</tbody>
</table>

Or

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 113A Fundamental Chemistry I & CHEM 113L and Fundamental Chemistry I Laboratory</td>
<td></td>
</tr>
<tr>
<td>& CHEM 114 and Fundamental Chemistry II</td>
<td></td>
</tr>
<tr>
<td>& CHEM 221 and Elementary Quantitative Analysis</td>
<td></td>
</tr>
</tbody>
</table>

Select an additional 8 hours of chemistry

Total Credit Hours: 19-20

Excluding CHEM 101, CHEM 131, CHEM 396, CHEM 398, CHEM 499, or CHEM 499H.

Grade Rules

C- and D Grades
A grade of C or above is required for all courses in the minor.
CHEM 106L Chemistry in Context II Laboratory
Prerequisites: CHEM 105L; CHEM 106A or parallel.
Notes: Ideally, CHEM 106A and CHEM 106L should be taken together. Credit may be earned in only one of CHEM 106 or CHEM 106L.
Description: Accompanying lab for CHEM 106A.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option

CHEM 109A General Chemistry I
Prerequisites: MATH 102, 103, or a Math Placement Exam score for MATH 104 or 106; CHEM 109L recommended parallel.
Notes: Ideally, CHEM 109A and CHEM 109L should be taken together. Credit toward the degree may be earned in only one of: CHEM 105, 105A, 109, 109A, 111, 113 or 113A.
Description: Lecture serving as an introduction to chemical reactions, the mole concept, properties of the states of matter, atomic structure, periodic properties, chemical bonding, and molecular structure.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: AGRO 327, HORT 327, TLMT 327; AGRO 455, AGRO 855, NRES 455, NRES 855, SOIL 455; ASCI 240, BIOL 205; BSEN 321, CIVE 321; BSEN 321H, CIVE 321H; CHEM 106A; CHEM 109L; CHEM 110A; CHME 114; CHME 202; ENVE 210; FDST 205; FORS 300; FORS 411; GEOL 200; GEOL 418, GEOL 818, NRES 419, NRES 819, WATS 418; GEOL 418L, GEOL 818L, NRES 419L, NRES 819L, WATS 418L; MATH 260; MATH 360; NRES 319
ACE: ACE 4 Science

CHEM 109L General Chemistry I Laboratory
Prerequisites: CHEM 109A or parallel.
Notes: Ideally, CHEM 109A and CHEM 109L should be taken together. Credit may be earned in only one of: CHEM 109 or CHEM 109L.
Description: Accompanying laboratory for CHEM 109A.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option
Prerequisite for: AGRO 327, HORT 327, TLMT 327; AGRO 455, AGRO 855, NRES 455, NRES 855, SOIL 455; ASCI 240, BIOL 205; BSEN 321, CIVE 321; BSEN 321H, CIVE 321H; CHEM 106A; CHEM 109L; CHEM 110A; CHME 114; CHME 202; ENVE 210; FDST 205; FORS 300; FORS 411; GEOL 200; GEOL 418, GEOL 818, NRES 419, NRES 819, WATS 418; GEOL 418L, GEOL 818L, NRES 419L, NRES 819L, WATS 418L; MATH 260; MATH 360; NRES 319
ACE: ACE 4 Science

CHEM 110A General Chemistry II
Prerequisites: A grade of C, P, or better in CHEM 109 or 109A; CHEM 110L recommended parallel.
Notes: Ideally, CHEM 110A and CHEM 110L should be taken together. Credit toward the degree may be earned in only one of CHEM 106, 106A, 110, 110A, or 114.
Description: Lecture serving as an introduction to intermolecular forces, kinetics, chemical equilibrium, thermodynamics, and electrochemistry.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: AGRO 455, AGRO 855, NRES 455, NRES 855, SOIL 455; ASCI 320; ASCI 321; ASCI 340; BSEN 244; BSEN 321, CIVE 321; BSEN 321H, CIVE 321H; CHEM 110L; CHEM 221; CHEM 251; CHEM 255; CHEM 261; FDST 205; FORS 300; GEOL 418, GEOL 818, NRES 419, NRES 819, WATS 418; GEOL 418L, GEOL 818L, NRES 419L, NRES 819L, WATS 418L
ACE: ACE 4 Science

CHEM 110L General Chemistry II Laboratory
Prerequisites: CHEM 109L; CHEM 110A or parallel.
Notes: Ideally, CHEM 110A and CHEM 110L should be taken together. Credit may be earned in only one of CHEM 110 or CHEM 110L.
Description: Accompanying laboratory for CHEM 110A.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option
Prerequisite for: AGRO 455, AGRO 855, NRES 455, NRES 855, SOIL 455; CHEM 221; CHEM 251; CHEM 255; CHEM 261; GEOL 418, GEOL 818, NRES 419, NRES 819, WATS 418

CHEM 111 Chemistry for Engineering and Technology
Prerequisites: Math Placement Test score for MATH 106.
Notes: Credit towards the degree may be earned in only one: CHEM 105, 105A, 109, 109A, 111, 113 or 113A or 195. Not open to chemical engineering majors. One year of high school chemistry and physics is expected.
Description: A one semester introduction to the fundamentals of chemistry for engineering students.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Prerequisite for: BSEN 321, CIVE 321; BSEN 321H, CIVE 321H; BSEN 355; GEOL 418, GEOL 818, NRES 419, NRES 819, WATS 418; MATH 260; MATH 360
CHEM 113A Fundamental Chemistry I
Prerequisites: MATH 102, 103 or a Math Placement Exam score for MATH 106; CHEM 113L recommended parallel.
Notes: Ideally, CHEM 113A and CHEM 113L should be taken together. Credit toward the degree may be earned in only one of: CHEM 105, 105A, 109, 109A, 111, 113 or 113A.
Description: Fundamentals of chemistry for students in physical sciences or chemical engineering. Includes atomic and molecular structure, chemical bonding, states of matter, solutions, and acid-base reactions. Intended for students who plan to take upper-level courses in chemistry.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: BIOC 205; BSEN 321; CIVE 321; BSEN 321H; CHEM 110A; CHEM 113L; CHEM 114; CHME 202; ENV 210; GEOL 418, GEOL 818, NRES 419, NRES 819, WATS 418; GEOL 418L, GEOL 818L, NRES 419L, NRES 819L, WATS 418L
ACE: ACE 4 Science

CHEM 113L Fundamental Chemistry I Laboratory
Prerequisites: CHEM 113A or parallel.
Notes: Ideally, CHEM 113A and CHEM 113L should be taken together. Credit may be earned in only one of CHEM 113 or CHEM 113L.
Description: Accompanying lab for CHEM 113A.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option
Prerequisite for: GEOL 418, GEOL 818, NRES 419, NRES 819, WATS 418

CHEM 114 Fundamental Chemistry II
Prerequisites: A grade of C, P, or better in CHEM 113 or CHEM 113A. CHEM 113L recommended.
Notes: CHEM 221 is the associated laboratory course and is recommended parallel. Credit toward the degree may be earned in only one of CHEM 110, 110A, or 114.
Description: Chemical kinetics, oxidation-reduction reactions and electrochemistry, ionic solution equilibria, thermodynamic concepts, and chemistry of selected elements.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CHEM 110; CHEM 110A; CHEM 110L; CHEM 114 or parallel.

CHEM 116 Chemistry of Carbon Compounds
Prerequisite for: CHEM 221; CHEM 251; CHEM 255; CHEM 261; GEOL 418, GEOL 818, NRES 419, NRES 819, WATS 418; GEOL 418L, GEOL 818L, NRES 419L, NRES 819L, WATS 418L

CHEM 131H The Science of Food
Crosslisted with: FDST 131H, NUTR 131H
Description: Covers general and food chemistry, nutrition, food microbiology, food safety and quality, standards that are enforced by regulatory agencies, and food processes applied to improve food quality, shelf life and safety.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CHEM 251 and 253.

CHEM 221 Elementary Quantitative Analysis
Prerequisites: CHEM 110, CHEM 110A and CHEM 110L, or CHEM 114 or parallel.
Notes: This is the laboratory course for CHEM 114 as well as a stand-alone course in quantitative analysis. Credit may not be earned in both CHEM 221 and 116.
Description: Methods of statistical data evaluation and rigorous treatment of chemical equilibria, including chemical activity and coupled equilibria, will provide a foundation for understanding classical chemical quantitation techniques. Emphasis on laboratory techniques, including gravimetric and volumetric methods.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Offered: FALL/SPR
Prerequisite for: AGRO 455, AGRO 855, NRES 455, NRES 855, SOIL 455

CHEM 251 Organic Chemistry I
Prerequisites: A grade of C, P, or better in CHEM 110, CHEM 110A and CHEM 110L, or CHEM 114.
Notes: It is suggested that CHEM 253 be taken parallel with CHEM 251. Credit toward the degree may be earned in only one of CHEM 251 or 261.
Description: Chemistry of carbon compounds. Applications to the biological sciences, agriculture and pre-professional programs including pre-medical and pre-dental. Emphasizes basic principles.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: AGRO 455, AGRO 855, NRES 455, NRES 855, SOIL 455

CHEM 252 Organic Chemistry II
Prerequisite for: CHEM 251 and 253.
Description: Chemistry of carbonyl compounds. Aspects of aromatic chemistry, heterocycles, carbohydrates and nitrogen compounds, with some emphasis on the organic compounds found in nature.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CHEM 254
CHEM 253 Organic Chemistry I Laboratory
Prerequisites: CHEM 251 or parallel.
Notes: CHEM 221 recommended. Shares a quiz section with CHEM 251 and normally accompanies it.
Description: Basic techniques of organic chemistry. Structure, identification, physical properties of compounds, molecular modeling, and introduction to the spectroscopic characteristics of organic compounds.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option
Prerequisite for: CHEM 252; CHEM 254

CHEM 254 Organic Chemistry II Laboratory
Prerequisites: CHEM 251, 253; CHEM 252 or parallel.
Notes: Shares a quiz section with CHEM 252 and normally accompanies it.
Description: Synthesis of representative organic compounds. Qualitative analysis of organic compounds. Naturally occurring compounds.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option

CHEM 255 Biological Organic Chemistry
Prerequisites: CHEM 110 or 110A and 110L or CHEM 114
Notes: This course should not be taken by majors in Chemistry or Chemical Engineering.
Description: One-semester organic chemistry course in which biological molecules and biochemical reactions will be used to explain and illustrate the central concepts of organic chemistry.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CHEM 257 Biological Organic Chemistry Laboratory
Prerequisites: CHEM 255 or concurrent
Description: Basic techniques in organic chemistry with a focus on biomolecules. Structure, identification, and physical properties of compounds, accompanied with molecular modeling and introduction to spectroscopy.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option

CHEM 261 Organic Chemistry
Prerequisites: A grade of C, P, or better in CHEM 110, CHEM 110A and CHEM 110L, or CHEM 114.
Notes: It is suggested that CHEM 263 be taken parallel with CHEM 261. Credit toward the degree may be earned in only one of CHEM 251 or 261.
Description: CHEM 261 and 262, together with lab courses 263 and 264, form a continuous basic course covering the important compounds of carbon.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: BIOS 302; BIOS 312; BIOS 313; BIOS 314; BIOS 326; BIOS 443, BIOS 843, VBMS 843, MBIO 443; CHEM 252; CHEM 254; CHEM 262; CHEM 263; CHEM 263A

CHEM 262 Organic Chemistry
Prerequisites: CHEM 261
Notes: It is suggested that CHEM 264 be taken parallel with CHEM 262.
Description: Continuation of CHEM 261.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CHEM 254; CHEM 264; CHEM 264A

CHEM 263 Organic Chemistry Laboratory
Prerequisites: CHEM 261 or parallel.
Notes: It is suggested that CHEM 263 be taken parallel with CHEM 261.
Description: Students following the professional curriculum in chemistry should elect this course.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Grading Option: Graded with Option
Prerequisite for: CHEM 252; CHEM 254; CHEM 264; CHEM 264A

CHEM 263A Organic Chemistry Laboratory
Prerequisites: CHEM 261 or parallel.
Notes: It is suggested that CHEM 263A be taken parallel with CHEM 261.
Description: Students having credit in CHEM 251 and CHEM 253 or its equivalent should elect this course.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option
Prerequisite for: CHEM 252; CHEM 254; CHEM 264A

CHEM 264 Organic Chemistry Laboratory
Prerequisites: CHEM 262 or parallel; CHEM 263.
Notes: It is suggested that CHEM 264 be taken parallel with CHEM 262.
Description: Continuation of CHEM 263. Lab work in qualitative organic analysis.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Grading Option: Graded with Option
CHEM 264A Organic Chemistry Laboratory
Prerequisites: CHEM 262 or parallel; CHEM 263 or CHEM 263A.
Notes: It is suggested that CHEM 264A be taken parallel with CHEM 262.
Description: Continuation of CHEM 263A.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option

CHEM 391 Special Topics in Chemistry
Description: Topics vary.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Grading Option: Graded with Option

CHEM 396 Independent Study in Chemistry
Prerequisites: Permission.
Description: Independent reading or research under direction of a faculty member.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option

CHEM 398 Undergraduate Research in Chemistry
Prerequisites: Permission.
Description: Special research project under the direction of a member of the departmental faculty. The grade will be awarded following the submission of a written progress and/or final report.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 12
Grading Option: Graded with Option

CHEM 421 Analytical Chemistry
Crosslisted with: CHEM 821
Prerequisites: CHEM 221 and MATH 106; parallel CHEM 423/823
Description: Chemical and physical properties applied to quantitative chemical analysis. Solution equilibria, stoichiometry, and instrumental theory and techniques.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING
Prerequisite for: CHEM 423, CHEM 823; CHEM 824; CHEM 825A; CHEM 825B; CHEM 825D; CHEM 825G; CHEM 825J; CHEM 991A
ACE: ACE 10 Integrated Product

CHEM 423 Analytical Chemistry Laboratory
Crosslisted with: CHEM 823
Prerequisites: CHEM 421/821 or parallel.
Notes: It is suggested that CHEM 423 be taken parallel with CHEM 421.
Description: Lab designed to accompany CHEM 421/821. Applications of analytical chemical principles to laboratory problems.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Grading Option: Graded with Option

CHEM 431 Biochemistry I: Structure and Metabolism
Crosslisted with: BIOC 431, BIOC 831, BIOS 431, BIOS 831, CHEM 831
Prerequisites: LIFE 120 with a grade of C or better; CHEM 252 or CHEM 262 with a grade of C or better.
Notes: BIOS 206 or AGRO 215 is recommended.
Description: Structure and function of proteins, nucleic acids, carbohydrates and lipids; nature of enzymes; major metabolic pathways of catabolism; and biochemical energy production.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL/SPR
Prerequisite for: AGRO 434, BIOC 434, BIOS 434, CHEM 434, AGRO 834, BIOC 834, BIOS 834, CHEM 834; AGRO 810, BIOC 810, HORT 810; ASCI 820; ASCI 917; ASCI 925, NUTR 925; ASCI 926; ASCI 927; NUTR 927; BIOC 305; BIOC 432, BIOC 832, BIOS 432, CHEM 432, CHEM 832, BIOS 832; BIOC 433, BIOS 833, CHEM 833, CHEM 433, CHEM 833; BIOC 440, BIOS 879; BIOS 950, VBMS 950; FDST 470, FDST 870; NUTR 450; NUTR 455; NUTR 820; NUTR 821; VBMS 410; VBMS 805

CHEM 432 Biochemistry II: Metabolism and Biological Information
Crosslisted with: BIOC 432, BIOC 832, BIOS 432, CHEM 832, BIOS 832
Prerequisites: BIOC 431/831 with a grade of C or better; BIOS 206 or AGRO 215 with a grade of C or better.
Notes: Continuation of BIOC 431/831.
Description: Major metabolic pathways of anabolism, structural and biochemical aspects of biological information flow and use in biotechnology.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL/SPR
Prerequisite for: ASCI 949, BIOC 949, BIOS 949, NUTR 949; BIOC 435; BIOC 932, BIOS 932; BIOC 933, BIOS 933, CHEM 933; BIOC 934, BIOS 934, CHEM 934; BIOC 935, BIOS 935, CHEM 935; BIOC 998; BIOS 950, VBMS 950; VBMS 919; VBMS 951

CHEM 433 Biochemistry Laboratory
Crosslisted with: BIOC 433, BIOC 833, BIOS 433, BIOS 833, CHEM 833
Prerequisites: BIOC 431/831 or parallel; or CHEM 435/835.
Description: Introduction to techniques used in biochemical and biotechnology research, including measurement of pH, spectroscopy, analysis of enzymes, chromatography, fractionation of macromolecules, electrophoresis, and centrifugation.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Grading Option: Graded with Option
Offered: FALL/SPR
Prerequisite for: BIOC 437, BIOC 837, BIOS 437, BIOS 837; BIOC 898
CHEM 434 Plant Biochemistry
Crosslisted with: AGRO 434, BIOC 434, BIOS 434, AGRO 834, BIOC 834, BIOS 834, CHEM 834
Prerequisites: BIOC/BIOS/CHEM 431/831.
Description: Biochemical metabolism unique to plants. Relationships of topics previously acquired in general biochemistry to biochemical processes unique to plants. Biochemical mechanisms behind physiological processes discussed in plant or crop physiology.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
CHEM 435 Chemical Biology
Crosslisted with: CHEM 835
Prerequisites: CHEM 252 or 262, and CHEM 221
Notes: Credit toward the undergraduate or graduate degree cannot be earned in both CHEM 435/835 and 431/831 and/or CHEM 432/832 or their equivalents.
Description: Fundamentals of chemical biology with an emphasis on the underlying principles of biomolecular structures, macromolecular-small molecule interactions, including mechanistic aspects of enzymes and cofactors, use of modified enzymes to alter biochemical pathways, and the use of chemical tools for understanding biological processes.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: BIOC 433, BIOC 833, BIOS 433, BIOS 833, CHEM 433, CHEM 833; CHEM 437, CHEM 837

CHEM 437 Chemical Biology Laboratory
Crosslisted with: CHEM 837
Prerequisites: CHEM 435/835 or parallel
Description: Introduction to techniques of chemical biology including the study of biological macromolecules and their interaction with small molecule ligands and effectors. Explore modern methods for macromolecular isolation, characterization, and for kinetic analysis and modeling.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Grading Option: Graded
Offered: FALL

CHEM 441 Inorganic Chemistry
Crosslisted with: CHEM 841
Prerequisites: CHEM 221 with a minimum grade of C; CHEM 252 or 262.
Notes: CHEM 443 is recommended to be taken parallel.
Description: CHEM 441/841 and the accompanying lab course, CHEM 443/843, constitute a basic course in inorganic chemistry. Structure, bonding, properties, and reactions of inorganic compounds with emphasis on the relationships and trends that are embodied in the periodic table of the elements.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: CHEM 845
ACE: ACE 10 Integrated Product

CHEM 443 Inorganic Chemistry Laboratory
Crosslisted with: CHEM 843
Prerequisites: CHEM 441 or parallel.
Notes: It is suggested that CHEM 443 be taken in parallel with CHEM 441.
Description: Introduction to typical inorganic chemistry laboratory techniques through the preparation and characterization of inorganic compounds.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Grading Option: Graded with Option
Prerequisite for: CHEM 845

CHEM 463 Advanced Organic Preparations
Crosslisted with: CHEM 863
Prerequisites: CHEM 252 and CHEM 254.
Notes: For students who wish additional laboratory work in organic chemistry.
Credit Hours: 1-5
Min credits per semester: 1
Max credits per semester: 5
Max credits per degree: 5
Grading Option: Graded with Option

CHEM 471 Physical Chemistry
Crosslisted with: CHEM 871
Prerequisites: CHEM 221; MATH 107; and PHYS 142 or 212.
Notes: Credit may not be earned in both CHEM 471/871 and CHEM 481/881.
Description: Conceptual and mathematical foundations of classical and statistical thermodynamics. Applications of thermodynamics to phase and chemical equilibria. Thermodynamics of solutions of small molecules and of polymers. Biological applications of thermodynamics. Introduction to chemical and biochemical spectroscopy.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Prerequisite for: BIOC 486, BIOC 886, BIOS 486, BIOS 886, CHEM 486, CHEM 886

CHEM 481 Physical Chemistry I
Crosslisted with: CHEM 881
Prerequisites: CHEM 221 with grade of at least C; MATH 208; PHYS 212.
Notes: Credit may not be earned in both CHEM 471/871 and CHEM 481/881.
Description: CHEM 481/881 and 482/882 form a continuous basic course in physical chemistry for students interested in chemistry as a profession. Introduction to quantum mechanics and statistical mechanics; application to problems in atomic and molecular structure and to spectroscopy.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Prerequisite for: BIOC 486, BIOC 886, BIOS 486, BIOS 886, CHEM 486, CHEM 886; CHEM 482, CHEM 882; CHEM 484, CHEM 884; CHEM 484A, CHEM 884A; CHEM 991 J; PHYS 422, PHYS 822, ECEN 422, ECEN 822
CHEM 482 Physical Chemistry II
Crosslisted with: CHEM 882
Prerequisites: CHEM 481/881
Notes: This course should parallel CHEM 484/884. Continuation of CHEM 481/881.
Description: Thermodynamics and statistical mechanics and their application to the study of solids, liquids, gases, solutions, phase equilibria, and chemical equilibria. Chemical kinetics and reaction dynamics.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Prerequisite for: CHEM 484, CHEM 884; CHEM 484A, CHEM 884A; CHEM 845; CHEM 991 J; CHME 925; MATL 962; MATL 972

CHEM 484 Physical Chemical Measurements
Crosslisted with: CHEM 884
Prerequisites: CHEM 481/881; CHEM 482/882 or parallel.
Notes: It is suggested that CHEM 484/884 be taken in parallel with CHEM 482/882.
Description: Applications of physical measurements and principles to study chemical systems and processes.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CHEM 484A Physical Chemical Measurements
Crosslisted with: CHEM 884A
Prerequisites: CHEM 481/881; CHEM 482/882 or parallel.
Notes: It is suggested that CHEM 484A/884A be taken in parallel with CHEM 482/882.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Grading Option: Graded with Option

CHEM 486 Advanced Topics in Biophysical Chemistry
Crosslisted with: BIOL 486, BIOL 886, BIOS 486, BIOS 886, CHEM 886
Prerequisites: CHEM 471/871 or CHEM 481/881.
Description: Applications of thermodynamics to biochemical phenomena, optical properties of proteins and polynucleotides, and kinetics of rapid reactions.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

CHEM 499 Undergraduate Thesis
Prerequisites: Permission
Description: Independent research leading to a thesis.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option

CHEM 499H Honors Undergraduate Thesis
Prerequisites: Permission.
Description: Independent research leading to a thesis.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option

PLEASE NOTE
This document represents a sample 4-year plan for degree completion with this major. Actual course selection and sequence may vary and should be discussed individually with your college or department academic advisor. Advisors also can help you plan other experiences to enrich your undergraduate education such as internships, education abroad, undergraduate research, learning communities, and service learning and community-based learning.

Chemistry (B.A.)
Chemistry (B.S.)

Career Information

The following represents a sample of the internships, jobs and graduate school programs that current students and recent graduates have reported.

Transferable Skills
• Design and implement research experiments
• Understand and practice proper laboratory safety procedures
• Read, understand, and critically review scientific information
• Define problems and identifying causes
• Comprehend and critically evaluate complex information
• Compose convincing arguments and present logical information
• Confidently navigate complex, ambiguous projects and environments
• Demonstrate ethical conduct in research activities
• Document and replicate processes and procedures

Jobs of Recent Graduates
• Product Associate, LI-COR Biosciences - Lincoln NE
• Associate Scientist I, Teva Pharmaceutical - Salt Lake City UT
• Principle Scientist I, Novartis - Lincoln NE
• Pharmacy Intern I, Methodist Women's Hospital - Omaha NE
• Chemistry Lab Technician, Arkansas State University - Jonesboro AR
• Technical Services, Epic Systems Corporation - Madison WI
• Chemical Contractor, Zoetis - Lincoln NE
• Quality Management Chemist, Cargill - Blair NE
• Chemical Analyst, Purac America - Lincolnhire IL
• Civilian Scientist, United States Navy - China Lake CA
• Patent Agent, Suiter Swantz - Omaha NE
• Quality Team Member, Ardent Mills - Ogden UT
• Quality Tech, Cargill - Lake City MN
• Laboratory Technician, Enthone - Bridgeview IL
• Scientist, Celerion - Lincoln NE

Internships
• Intern, Colorado Bureau of Investigation - Denver CO
• Research and Development Intern, Gelita - Sergeant Bluff IA
• Distinguished Life Sciences Scholar, Beckman/Distinguished Life Sciences Scholars - Lincoln NE

Graduate & Professional Schools

• Doctor of Dental Surgery, University of Nebraska Medical Center
 College of Dentistry - Lincoln NE

• Master’s Degree, Chemistry, University of Nebraska-Lincoln - Lincoln NE

• Doctor of Pharmacy, University of Nebraska Medical Center - Omaha NE

• Ph.D., Chemistry, University of Nebraska-Lincoln - Lincoln NE

• Medical Doctor, University of Nebraska Medical Center - Omaha NE

• Ph.D., Organic Chemistry, University of California-Riverside -

• Doctor of Optometry, Southern College of Optometry - Memphis TN

• Master’s Degree, Molecular Genetics, Ohio State University - Columbus OH

• Ph.D., Analytical Chemistry, Ohio State University - Columbus OH

• Doctor of Physical Therapy, Missouri State University - Springfield MO

• Master’s Degree, Science Teaching, University of Nebraska-Lincoln - Lincoln NE

• Medical Doctor, University of Nebraska Medical Center - Omaha NE

• Doctor of Pharmacy, University of Nebraska Medical Center - Omaha NE