PLANT BIOLOGY

Description

Website: http://agronomy.unl.edu/plant-biology

The plant biology degree program provides flexible entry for undergraduate students that have an interest in the plant sciences. Once enrolled in the program, students will take a core of classes that will allow them to continue in the plant biology degree program or allow them to easily transfer to other Life Sciences programs. Students will have the opportunity to interact and gain research experience with the faculty of the Center for Plant Science Innovation as well as the above departments and schools for advising, internships, and research opportunities.

Studying plant biology will allow students to explore their knowledge of plants at the following levels:

1. Molecular. (Biotechnology Option)
2. Cellular and organismal. (biological, biochemical/chemical sciences)
3. Whole plant/applied physiological. (horticulture and agronomy courses)
4. Ecological. (Ecology and Management Option)

Students may select a bachelor of science track through the College of Agricultural Sciences and Natural Resources. Every student must complete a set of core courses that provide breadth in basic sciences. Introduction to plant biology should be taken during the first semester in the program. Students also must complete an emphasis to provide depth in one of the following options: Biotechnology or Ecology and Management.

The plant biology degree program includes a career experience/internship course (PLAS 295/RNGE 295/SOIL 295; BIOS 395; PLAS 395T; NRES 497) which provides the opportunity to gain work experience in an off-campus setting related to a student’s academic and career objectives.

A research project initiated by the beginning of the junior year is required. The presentation of this work will be part of the Plant Biology Portfolio and Assessment course.

Students interested in plant biology through the College of Agricultural Sciences and Natural Resources are advised to make an initial appointment with Program Director David Holding (dholding2@unl.edu) and/or academic advisors, Christian Elowsky (celowsky@unl.edu) or Cheryl Dunn (cdunn3@unl.edu).

College Requirements

College Admission

Requirements for admission into the College of Agricultural Sciences and Natural Resources (CASNR) are consistent with general University admission requirements (one unit equals one high school year): 4 units of English, 4 units of mathematics, 3 units of natural sciences, 3 units of social sciences, and 2 units of world language. Students must also meet performance requirements: a 3.0 cumulative high school grade point average OR an ACT composite of 20 or higher, writing portion not required OR a score of 1040 or higher on the SAT Critical Reading and Math sections OR rank in the top one-half of graduating class; transfer students must have a 2.0 (on a 4.0 scale) cumulative grade point average and 2.0 on the most recent term of attendance.

Admission Deficiencies/Removal of Deficiencies

Students who are admitted to CASNR with core course deficiencies must remove these deficiencies within the first 30 credit hours at the University of Nebraska—Lincoln, or within the first calendar year at Nebraska, whichever takes longer. College-level coursework taken to remove deficiencies may be used to meet degree requirements in CASNR.

Deficiencies in the required entrance subjects can be removed by the completion of specified courses in the University or by correspondence.

The Office of Admissions, Alexander Building (south entrance), City Campus, provides information to new students on how deficiencies can be removed.

College Degree Requirements

Curriculum Requirements

The curriculum requirements of the College consist of three areas: ACE (Achievement-Centered Education), College of Agricultural Sciences and Natural Resources Core, and Degree Program requirements and electives. All three areas of the College Curriculum Requirements are incorporated within the description of the Major/Degree Program sections of the catalog. The individual major/degree program listings of classes ensure that a student will meet the minimum curriculum requirements of the College.

World Languages/Language Requirement

Two units of a world language are required. This requirement is usually met with two years of high school language.

Experiential Learning

All undergraduates in the College of Agricultural Sciences and Natural Resources must take an Experiential Learning (EL) designated course. This may include 0-credit courses designed to document co-curricular activities recognized as Experiential Learning.

Minimum Hours Required for Graduation

The College grants the bachelors degree in programs associated with agricultural sciences, natural resources, and related programs. Students working toward a degree must earn at least 120 semester hours of credit. A minimum cumulative grade point average of C (2.0 on a 4.0 scale) must be maintained throughout the course of studies and is required for graduation. Some degree programs have a higher cumulative grade point average required for graduation. Please check the degree program on its graduation cumulative grade point average.

Grade Rules

Removal of C-, D, and F Grades

Only the most recent letter grade received in a given course will be used in computing a student’s cumulative grade point average if the student has completed the course more than once and previously received a grade or grades below C in that course.

The previous grade (or grades) will not be used in the computation of the cumulative grade point average, but it will remain a part of the academic record and will appear on any transcript.

A student can remove from their cumulative average a course grade of C-, D+, D, D-, or F if the student repeats the same course at the University of Nebraska and receives a grade other than P (pass), I (incomplete), N
(no pass), W (withdrawn), or NR (no report). If a course is no longer being offered, it is not eligible for the revised grade point average computation process.

For complete procedures and regulations, see the Office of the University Registrar website at http://www.unl.edu/regrec/course-repeats (http://www.unl.edu/regrec/course-repeats/).

Pass/No Pass
Students in CASNR may take any course offered on a Pass/No Pass basis within the 24-hour limitation established by the Faculty Senate. However, a department may specify that the Pass/No Pass status of its courses be limited to non-majors or may choose to offer some courses for letter grades only.

GPA Requirements
A minimum cumulative grade point average of C (2.0 on a 4.0 scale) must be maintained throughout the course of studies and is required for graduation. Some degree programs have a higher cumulative grade point average required for graduation. Please check the degree program on its graduation cumulative grade point average.

Transfer Credit Rules
To be considered for admission a transfer student, Nebraska resident or nonresident, must have an accumulated average of C (2.0 on a 4.0 scale) and a minimum C average in the last semester of attendance at another college. Transfer students who have completed less than 12 credit hours of college study must submit either ACT or SAT scores.

Ordinarily, credits earned at an accredited college are accepted by the University. The College, however, will evaluate all hours submitted on an application for transfer and reserves the right to accept or reject any of them. Sixty (60) is the maximum number of hours the University will accept on transfer from a two-year college. Ninety (90) is the maximum number of hours the University will accept from a four-year college. Transfer credit in the degree program must be approved by the degree program advisor on a Request for Substitution Form to meet specific course requirements, group requirements, or course level requirements in the major. At least 9 hours in the major field, including the capstone course, must be completed at the University of Nebraska–Lincoln regardless of the number of hours transferred.

The College will accept no more than 10 semester hours of C-, D+, D, and D- grades from other schools. The C-, D+, D, and D- grades can only be applied to free electives. This policy does not apply to the transfer of grades from UNO or UNK to the University of Nebraska–Lincoln.

Joint Academic Transfer Programs
The College of Agricultural Sciences and Natural Resources has agreements with many institutions to support joint academic programs. The transfer programs include dual degree programs and cooperative degree programs. Dual degree programs offer students the opportunity to receive a degree from a participating institution and also to complete the requirements for a bachelor of science degree in CASNR. Cooperative programs result in a single degree from either the University of Nebraska–Lincoln or the cooperating institution.

Dual Degree Programs
A to B Programs
The A to B Program, a joint academic program offered by the CASNR and participating community colleges, allows students to complete the first two years of a degree program at the participating community college and continue their education and study in a degree program leading toward a bachelor of science degree.

The A to B Program provides a basic knowledge plus specialized coursework. Students transfer into CASNR with junior standing.

Depending on the community college, students enrolled in the A to B Program may complete the requirements for an associate of science at the community college, transfer to the University of Nebraska–Lincoln, and work toward a bachelor of science degree.

Participating community colleges include:

- Central Community College
- Metropolitan Community College
- Mid-Plains Community College
- Nebraska College of Technical Agriculture
- Nebraska Indian Community College
- Northeast Community College
- Southeast Community College
- Western Nebraska Community College

3+2 Programs
Two specialized degree programs in animal science and veterinary science are offered jointly with an accredited college or school of veterinary medicine. These two programs permit CASNR animal science or veterinary science students to receive a bachelor of science degree from the University of Nebraska–Lincoln with a degree in animal science or veterinary science after successfully completing two years of the professional curriculum in veterinary medicine at an accredited veterinary school. Students who successfully complete the 3+2 Program, must provide transcripts and complete the Application for Degree form via MyRED. Students without MyRED access may apply for graduation in person at Husker Hub in the Canfield Administration Building, or by mail. Students should discuss these degree programs with their academic advisor.

Cooperative Degree Programs
Academic credit from the University and a cooperating institution are applied towards a four-year degree from either the University of Nebraska–Lincoln (University degree-granting program) or the cooperating institution (non-University degree-granting program). All have approved programs of study.

UNL Degree-Granting Programs
A University of Nebraska–Lincoln degree-granting program is designed to provide students the opportunity to complete a two-year program of study at one of the four-year institutions listed below, transfer to CASNR, and complete the requirements for a bachelor of science degree.

Chadron State College. Chadron State College offers a 2+2 program leading to a grassland ecology and management degree program and a transfer program leading to a bachelor of science in agricultural education in the teaching option.

Wayne State College. Wayne State College offers a 3+1 program leading to a bachelor of science in plant biology in the ecology and management option and a 3+1 program leading to a bachelor of science in Applied Science.
University of Nebraska at Kearney. Transfer programs are available for students pursuing degree programs leading to a bachelor of science degree.

University of Nebraska at Omaha. Transfer programs are available for students pursuing degree programs leading to a bachelor of science degree.

Non University of Nebraska–Lincoln Degree-Granting Programs CASNR cooperates with other institutions to provide coursework that is applicable not only as elective credits but also toward the fulfillment of course requirements. Information about the ACE program may be viewed at ace.unl.edu (https://ace.unl.edu/).

Independent study projects include research, literature review or extension of coursework under the supervision and evaluation of a departmental faculty member.

Students may only count 12 hours of independent study toward their degrees and no more than 6 hours can be counted during their last 36 hours earned, excluding senior thesis, internships, and courses taught under an independent study number.

Other College Degree Requirements

Capstone Course Requirement
A capstone course is required for each CASNR degree program. A capstone course is defined as a course in which students are required to integrate diverse bodies of knowledge to solve a problem or formulate a policy of societal importance.

ACE Requirements
All students must fulfill the Achievement Centered Education (ACE) requirements. Information about the ACE program may be viewed at ace.unl.edu (https://ace.unl.edu/).

The minimum requirements of CASNR reflect the common core of courses that apply to students pursuing degrees in the college. Students should work with an advisor to satisfy ACE outcomes 1, 2, 3, 4, 6, and 10 with the college requirements.

Catalog Rule
Students must fulfill the requirements stated in the catalog for the academic year in which they are first admitted to the University of Nebraska–Lincoln or when they were first admitted to a Joint Academic Transfer Program. Students transferring from a community college, but without admission to a Joint Academic Transfer Program, may be eligible to fulfill the requirements as stated in the catalog for an academic year in which they were enrolled at the community college prior to attending the University of Nebraska–Lincoln. This decision should be made in consultation with academic advisors, provided the student a) was enrolled in a community college during the catalog year they are utilizing, b) maintained continuous enrollment at the previous institution for 1 academic year or more, and c) continued enrollment at the University of Nebraska-Lincoln within 1 calendar year from their last term at the previous institution. In consultation with advisors, a student may choose to follow a subsequent catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at the University of Nebraska–Lincoln in the College of Agricultural Sciences and Natural Resources. Students must complete all degree requirements from a single catalog year. The catalog which a student follows for degree requirements may not be more than 10 years old at the time of graduation.

Learning Outcomes
Graduates of plant biology will be able to:

1. Be confident in explaining how various plants grow and reproduce and predict how they will respond to their growing environment.
2. Plan and conduct experiments that are designed to test hypotheses and then communicate their discoveries in formats designed for other scientists or for the public.
3. Use the principles of ecology to analyze and interpret the interactions of the plant, animal, environmental, and economic aspects of grassland ecosystems. (Ecology and Management Option)

4. Identify management strategies for grasslands that ensure sustained productivity and resilience. (Ecology and Management Option)

5. Envision and design genetic and production improvements in plants to better meet the needs of people or changes in plant production environments. (Biotechnology Option)

6. Be competitive applicants for graduate programs worldwide in plant biology.

Major Requirements

The core requirements and one of the options must be completed.

Core Requirements

College Integrative Course (ACE 8)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIL 101</td>
<td>Science and Decision-Making for a Complex World</td>
<td>3</td>
</tr>
</tbody>
</table>

Career Experience

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 395</td>
<td>Internship</td>
</tr>
<tr>
<td>NRES 497</td>
<td>Career Experiences in Natural Resource Sciences</td>
</tr>
<tr>
<td>PLAS 295 / RNGE 295 / SOIL 295</td>
<td>Internship</td>
</tr>
<tr>
<td>PLAS 395A</td>
<td>Internship in Agronomy</td>
</tr>
<tr>
<td>PLAS 395B</td>
<td>Internship in Horticulture</td>
</tr>
<tr>
<td>PLAS 395T</td>
<td>Internship in Turfgrass Science and Management</td>
</tr>
</tbody>
</table>

Independent Study/Current Project

Select one course at the 300 or 400 level Independent Study/Research in any of the following subject codes: BIOC, BIOS, ENTO, MBIO, NRES, PLAS, PLPT, RNGE, SOIL

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 498</td>
<td>Independent Research in Biological Sciences</td>
</tr>
<tr>
<td>PLAS 391B</td>
<td>Special Topics in Horticulture</td>
</tr>
<tr>
<td>PLAS 399</td>
<td>Independent Study</td>
</tr>
<tr>
<td>PLAS 496</td>
<td>Independent Study</td>
</tr>
<tr>
<td>RNGE 496</td>
<td>Independent Study</td>
</tr>
<tr>
<td>SOIL 496</td>
<td>Independent Study</td>
</tr>
<tr>
<td>NRES 496</td>
<td>Independent Study</td>
</tr>
<tr>
<td>PLPT 496</td>
<td>Independent Study</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 5

Mathematical and Statistics (ACE 3)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 106</td>
<td>Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>STAT 218</td>
<td>Introduction to Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 8

Communications

Written Communication (ACE 1)

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 150</td>
<td>Writing and Inquiry</td>
</tr>
<tr>
<td>ENGL 151</td>
<td>Writing for Change</td>
</tr>
<tr>
<td>ENGL 254</td>
<td>Writing and Communities</td>
</tr>
<tr>
<td>JGEN 120</td>
<td>Basic Business Communication</td>
</tr>
<tr>
<td>JGEN 200</td>
<td>Technical Communication I</td>
</tr>
<tr>
<td>JGEN 300</td>
<td>Technical Communication II</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEC 102</td>
<td>Interpersonal Skills for Leadership</td>
</tr>
<tr>
<td>COMM 101</td>
<td>Communication in the 21st Century</td>
</tr>
<tr>
<td>COMM 209</td>
<td>Public Speaking</td>
</tr>
<tr>
<td>COMM 210</td>
<td>Communicating in Small Groups</td>
</tr>
<tr>
<td>COMM 215</td>
<td>Visual Communication</td>
</tr>
<tr>
<td>COMM 283</td>
<td>Interpersonal Communication</td>
</tr>
<tr>
<td>COMM 286</td>
<td>Business and Professional Communication</td>
</tr>
<tr>
<td>JGEN 300</td>
<td>Technical Communication II</td>
</tr>
<tr>
<td>MRKT 257</td>
<td>Sales Communication</td>
</tr>
<tr>
<td>NRES 260</td>
<td>Introduction to Conservation Photography</td>
</tr>
<tr>
<td>TMFD 121</td>
<td>Visual Communication with Animation</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 6

Natural Sciences

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAS 153 / SOIL 153</td>
<td>Soil Resources</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 109A & CHEM 109L</td>
<td>General Chemistry I and General Chemistry I Laboratory (ACE 4)</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 110A & CHEM 110L</td>
<td>General Chemistry II and General Chemistry II Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Select from the following: 4-8

If you plan to take BIOC 401 & BIOC 401L, select one sequence from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 251 & CHEM 253 & CHEM 252</td>
<td>Organic Chemistry I and Organic Chemistry I Laboratory and Organic Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 261 & CHEM 263 & CHEM 262</td>
<td>Mechanistic Organic Chemistry I and Mechanistic Organic Chemistry I Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

If you plan to take BIOC 431, select one sequence from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 251 & CHEM 253 & CHEM 261</td>
<td>Organic Chemistry I and Organic Chemistry I Laboratory and Mechanistic Organic Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 261 & CHEM 262 & CHEM 263</td>
<td>Mechanistic Organic Chemistry I and Mechanistic Organic Chemistry I Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Select 4 - 5 hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 141</td>
<td>Physics for Life Sciences I</td>
</tr>
<tr>
<td>PHYS 151</td>
<td>Elements of Physics</td>
</tr>
</tbody>
</table>

Select 4 hours from the following: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 401</td>
<td>Elements of Biochemistry</td>
</tr>
<tr>
<td>BIOC 401L</td>
<td>and Laboratory for Elements of Biochemistry</td>
</tr>
<tr>
<td>BIOC 431</td>
<td>Biochemistry I: Structure and Metabolism</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 24-28
Biological Sciences

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAS 215</td>
<td>Genetics</td>
<td>4</td>
</tr>
<tr>
<td>or BIOS 206</td>
<td>General Genetics</td>
<td></td>
</tr>
<tr>
<td>PLAS 278</td>
<td>Botany</td>
<td>4</td>
</tr>
<tr>
<td>PLAS 325</td>
<td>Introductory Plant Physiology</td>
<td>4</td>
</tr>
<tr>
<td>LIFE 120 & LIFE 120L</td>
<td>Fundamentals of Biology I and Fundamentals of Biology I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>LIFE 121 & LIFE 121L</td>
<td>Fundamentals of Biology II and Fundamentals of Biology II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>NRES 220 & BIOS 207</td>
<td>Principles of Ecology and Ecology Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>or NRES 222</td>
<td>Ecology and Evolution</td>
<td></td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 24

Economics, Humanities and Social Sciences (ACE 6)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECN 141</td>
<td>Introduction to the Economics of Agriculture</td>
<td>3</td>
</tr>
<tr>
<td>ECON 200</td>
<td>Economic Essentials and Issues</td>
<td>3</td>
</tr>
<tr>
<td>ECON 211</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 212</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
</tbody>
</table>

Select one course each from ACE outcomes 5, 7, and 9: 12

Credit Hours Subtotal: 21

Option Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete requirements</td>
<td>37-38</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 38

Total Credit Hours: 126-130

1 Minimum C grade required.

Ecology and Management Option

Within this option one course must be taken to fulfill the ACE 10 outcome. Suggested courses are:

ACE 10 Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 454 / NRES 454</td>
<td>Ecological Interactions</td>
<td></td>
</tr>
<tr>
<td>BIOS 457 / GEOL 457</td>
<td>Ecosystem Ecology</td>
<td></td>
</tr>
<tr>
<td>NRES 438</td>
<td>Grassland Conservation: Planning and Management</td>
<td></td>
</tr>
<tr>
<td>PLAS 403</td>
<td>Scientific Writing and Communication</td>
<td></td>
</tr>
<tr>
<td>PLAS 435</td>
<td>Agroecology</td>
<td></td>
</tr>
</tbody>
</table>

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 245 / PLAS 245</td>
<td>Introduction to Grassland Ecology and Management</td>
<td>3-4</td>
</tr>
<tr>
<td>or NRES 310</td>
<td>Introduction to Forest Management</td>
<td></td>
</tr>
<tr>
<td>PLAS 444 / GRAS 444 / NRES 444 / RNGE 444</td>
<td>Ecosystem Monitoring and Assessment</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 6-7

Earth Sciences

Water/Climate

Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>METR 100</td>
<td>Weather and Climate</td>
<td></td>
</tr>
<tr>
<td>NRES 208</td>
<td>Climate Literacy in Natural Resources</td>
<td></td>
</tr>
<tr>
<td>NRES 408 / GEOG 408 / METR 408 / PLAS 408</td>
<td>Microclimate: The Biological Environment</td>
<td></td>
</tr>
<tr>
<td>NRES 281 / GEOG 281</td>
<td>Introduction to Water Science</td>
<td></td>
</tr>
</tbody>
</table>

Geospatial Information Sciences

Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 418 / NRES 418</td>
<td>Introduction to Remote Sensing</td>
<td></td>
</tr>
<tr>
<td>NRES 218</td>
<td>Introduction to Geospatial Technologies</td>
<td></td>
</tr>
<tr>
<td>NRES 415</td>
<td>GIS for Agriculture and Natural Resources</td>
<td></td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 6-8

Biology

Plant Identification

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAS 442 / GRAS 442 / NRES 442 / RNGE 442</td>
<td>Wildland Plants</td>
<td>3</td>
</tr>
</tbody>
</table>

Plant-Animal-Organismal Interactions

Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAS 340 / GRAS 340 / RNGE 340</td>
<td>Range Management and Improvement</td>
<td></td>
</tr>
<tr>
<td>PLAS 460 / BIOS 460 / NRES 460 / SOIL 460</td>
<td>Soil Microbial Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOS 317</td>
<td>The Biology of Plants</td>
<td></td>
</tr>
<tr>
<td>BIOS 368</td>
<td>Plants in Human Medicine: Biological, Social, and Ethical Dimensions</td>
<td></td>
</tr>
<tr>
<td>BIOS 475</td>
<td>Avian Biology</td>
<td></td>
</tr>
<tr>
<td>BIOS 476 / NRES 476</td>
<td>Mammalogy</td>
<td></td>
</tr>
<tr>
<td>ENTO 115 / BIOS 115 & ENTO 116 / BIOS 116</td>
<td>Insect Biology and Insect Identification</td>
<td></td>
</tr>
<tr>
<td>NRES 211</td>
<td>Introduction to Conservation Biology</td>
<td></td>
</tr>
<tr>
<td>NRES 311</td>
<td>Wildlife Ecology and Management</td>
<td></td>
</tr>
<tr>
<td>NRES 348</td>
<td>Wildlife Damage Management</td>
<td></td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 6-7

Ecology and Management

Select two of the following: 7-8

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 454 / NRES 454</td>
<td>Ecological Interactions</td>
<td></td>
</tr>
<tr>
<td>BIOS 457 / GEOL 457</td>
<td>Ecosystem Ecology</td>
<td></td>
</tr>
<tr>
<td>NRES 310</td>
<td>Introduction to Forest Management</td>
<td></td>
</tr>
<tr>
<td>NRES 417 / PLAS 418</td>
<td>Agroforestry Systems in Sustainable Agriculture</td>
<td></td>
</tr>
<tr>
<td>NRES 424</td>
<td>Forest Ecology</td>
<td></td>
</tr>
<tr>
<td>NRES 459 / BIOS 459</td>
<td>Limnology</td>
<td></td>
</tr>
</tbody>
</table>

1 Minimum C grade required.
NRES 468 / Wetlands
BIOS 458 / BSEN 458
PLAS 204 / Resource-Efficient Crop Management
PLAS 240 / Forage Crop and Pasture Management
RNGE 240
PLAS 440 / Great Plains Ecosystem
GRAS 440 / NRES 440 / RNGE 440
Credit Hours Subtotal: 7-8

Electives
Select 7-13 credits 7-13
Credit Hours Subtotal: 7-13
Total Credit Hours 32-43

Biotechnology Option
Within this option one course must be taken to fulfill the ACE 10 outcome. Suggested courses are:

ACE 10 Courses
BIOS 312 Microbiology 3
BIOS 478 / Plant Anatomy 4
PLAS 478
Select one of the following: 3-4
BIOS 442 / Computational Biology
STAT 442
BIOS 477 Bioinformatics and Molecular Evolution
BIOS 337 Applications of Bioinformatics
BIOS 427 Practical Bioinformatics Laboratory
PLAS 420 Bioinformatics Applications in Agriculture
PLAS 454 Specialty Crop Innovations

Required Courses
BIOS 312 Microbiology 3
BIOS 478 / Plant Anatomy 4
PLAS 478
Select at least 3 hours from each of the three categories below for a total of 17 hours or more:

Biological Sciences
BIOS 205 Genetics, Molecular and Cellular Biology Laboratory
BIOS 302 Cell Biology
BIOS 317 The Biology of Plants
BIOS 418 Advanced Genetics
BIOS 420 / Molecular Genetics
MBIO 420
BIOS 425 Plant Biotechnology
BIOS 471 Plant Systematics
or BIOS 429 Phylogenetic Biology

BIOS 477 Bioinformatics and Molecular Evolution
PLAS 270 / Biological Invaders
NRES 270
PLAS 434 / Plant Biochemistry
BIOS 434 / BIOS 434 / CHEM 434
PLAS 460 / Soil Microbial Ecology
BIOS 460 / NRES 460 / SOIL 460

Applied Plant Biology
BIOS 368 Plants in Human Medicine: Biological, Social, and Ethical Dimensions
NRES 406 / PLAS 406 Plant Ecophysiology: Theory and Practice
PLAS 131 Plant Science
& PLAS 132 and Agronomic Plant Science Laboratory
or PLAS 131 Plant Science
& PLAS 133 and Horticultural Plant Science Laboratory
PLAS 221 Plant Propagation
PLAS 408 / GEOG 408 / Microclimate: The Biological Environment
METR 408 / NRES 408
PLAS 411 Crop Genetic Engineering
PLAS 412 Crop and Weed Genetics

Plant and Food System Management
ENTO 115 / Insect Biology
BIOS 115 and Insect Identification
& ENTO 116 / BIOS 116
FDST 205 Food Composition and Analysis
PLAS 204 Resource-Efficient Crop Management
PLAS 240 / Forage Crop and Pasture Management
RNGE 240
or PLAS 227 Introductory Turfgrass Management
PLAS 405 Crop Management Strategies (ACE 10)
or PLAS 435 Agroecology
NRES 435
PLAS 426 / Invasive Plants
NRES 426
PLAS 430 Introduction to Plant Diagnostics
PLAS 437 Animal, Food and Industrial Uses of Grain
PLAS 438 Producing Grain for Animal, Food and Industrial Uses
PLAS 454 Specialty Crop Innovations
PLAS 306 Greenhouse Practices and Management
PLAS 355 Perennial, Pot and Bedding Plant Production Laboratory

Credit Hours Subtotal: 27-28

Electives
Select 10-11 credits 10-11
Credit Hours Subtotal: 10-11
Total Credit Hours 37-39

Additional Major Requirements

Grade Rules

C- and D Grades
A grade of C or better is required in all courses (except free electives) in the major or minor.

Pass/No Pass
Students in plant biology may not take any of the core or option courses required for the degree Pass/No Pass except for the Exploring Plant Biology and Career Experience courses.

Program Assessment. To gauge the effectiveness of this program, students will be required to start and maintain an experiential portfolio throughout their program and complete an assessment survey.

Requirements for Minor Offered by Department

Requirements for the minor include a minimum of 19 hours of coursework with a minimum of 7 hours at the 300 level or above.

Requirements

PLAS 131 Plant Science 4
& PLAS 132 and Agronomic Plant Science Laboratory
or PLAS 131 Plant Science
& PLAS 133 and Horticultural Plant Science Laboratory
PLAS 278 Botany 4
PLAS 325 Introductory Plant Physiology 4
Credit Hours Subtotal: 12

Focus
Select one focus from the following: 7-8

Biotechnology Focus
PLAS 215 Genetics
or BIOS 206 General Genetics
Select any 300- or 400-level course from the following:
BIOC 442 / Computational Biology
STAT 442
BIOS 302 Cell Biology
BIOS 312 Microbiology
BIOS 317 The Biology of Plants
BIOS 337 Applications of Bioinformatics
BIOS 368 Plants in Human Medicine: Biological, Social, and Ethical Dimensions
BIOS 418 Advanced Genetics
BIOS 420 / Molecular Genetics
MBIO 420
BIOS 425 Plant Biotechnology
BIOS 427 Practical Bioinformatics Laboratory
BIOS 429 Phylogenetic Biology
BIOS 457 / Ecosystem Ecology
GEOL 457
BIOS 471 Plant Systematics

BIOS 477 Bioinformatics and Molecular Evolution
BIOS 478 / Plant Anatomy
PLAS 478
NRES 406 / Plant Ecophysiology: Theory and Practice
PLAS 406
PLAS 306 Greenhouse Practices and Management
PLAS 355 Perennial, Pot and Bedding Plant Production Laboratory
PLAS 403 Scientific Writing and Communication
PLAS 405 Crop Management Strategies
PLAS 408 / GEOG 408 / Microclimate: The Biological Environment
METR 408 / NRES 408

PLAS 411 Crop Genetic Engineering
PLAS 412 Crop and Weed Genetics
PLAS 426 / Invasive Plants
NRES 426
PLAS 434 / Plant Biochemistry
BIOS 434 /
CHEM 434
PLAS 435 / Agroecology
NRES 435
PLAS 437 Animal, Food and Industrial Uses of Grain
PLAS 438 Producing Grain for Animal, Food and Industrial Uses
PLAS 454 / Specialty Crop Innovations
NRES 454
PLAS 460 / Soil Microbial Ecology
BIOS 460 /
NRES 460 /
SOIL 460
PLPT 400 / Intermediate Plant Pathology
BIOS 400

Ecology and Management Focus
NRES 220 Principles of Ecology
NRES 222 Ecology Laboratory

Select any 300- or 400-level course from the following:
BIOS 317 The Biology of Plants
BIOS 368 Plants in Human Medicine: Biological, Social, and Ethical Dimensions
BIOS 454 / Ecological Interactions
NRES 454
BIOS 457 / Ecosystem Ecology
GEOL 457
BIOS 475 Avian Biology
BIOS 476 / Mammalogy
NRES 476
GEOG 418 / Introduction to Remote Sensing
NRES 418
NRES 310 Introduction to Forest Management
NRES 311 Wildlife Ecology and Management
NRES 348 Wildlife Damage Management
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 408</td>
<td>Microclimate: The Biological Environment</td>
</tr>
<tr>
<td>GEOG 408</td>
<td></td>
</tr>
<tr>
<td>METR 408</td>
<td></td>
</tr>
<tr>
<td>PLAS 408</td>
<td></td>
</tr>
<tr>
<td>NRES 417</td>
<td>Agroforestry Systems in Sustainable Agriculture</td>
</tr>
<tr>
<td>PLAS 418</td>
<td></td>
</tr>
<tr>
<td>NRES 424</td>
<td>Forest Ecology</td>
</tr>
<tr>
<td>NRES 438</td>
<td>Grassland Conservation: Planning and Management</td>
</tr>
<tr>
<td>NRES 459</td>
<td>Limnology</td>
</tr>
<tr>
<td>BIOS 459</td>
<td></td>
</tr>
<tr>
<td>NRES 468</td>
<td>Wetlands</td>
</tr>
<tr>
<td>BIOS 458</td>
<td></td>
</tr>
<tr>
<td>BSEN 458</td>
<td></td>
</tr>
<tr>
<td>PLAS 340</td>
<td>Range Management and Improvement</td>
</tr>
<tr>
<td>GRAS 340</td>
<td></td>
</tr>
<tr>
<td>RNGE 340</td>
<td></td>
</tr>
<tr>
<td>PLAS 403</td>
<td>Scientific Writing and Communication</td>
</tr>
<tr>
<td>PLAS 440</td>
<td>Great Plains Ecosystem</td>
</tr>
<tr>
<td>GRAS 440</td>
<td></td>
</tr>
<tr>
<td>NRES 440</td>
<td></td>
</tr>
<tr>
<td>RNGE 440</td>
<td></td>
</tr>
<tr>
<td>PLAS 442</td>
<td>Wildland Plants</td>
</tr>
<tr>
<td>GRAS 442</td>
<td></td>
</tr>
<tr>
<td>NRES 442</td>
<td></td>
</tr>
<tr>
<td>RNGE 442</td>
<td></td>
</tr>
<tr>
<td>PLAS 444</td>
<td>Ecosystem Monitoring and Assessment</td>
</tr>
<tr>
<td>GRAS 444</td>
<td></td>
</tr>
<tr>
<td>NRES 444</td>
<td></td>
</tr>
<tr>
<td>RNGE 444</td>
<td></td>
</tr>
<tr>
<td>PLAS 460</td>
<td>Soil Microbial Ecology</td>
</tr>
<tr>
<td>BIOS 460</td>
<td></td>
</tr>
<tr>
<td>NRES 460</td>
<td></td>
</tr>
<tr>
<td>SOIL 460</td>
<td></td>
</tr>
<tr>
<td>Credit Hours Subtotal:</td>
<td>7</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>19</td>
</tr>
</tbody>
</table>

Grade Rules

C- and D Grades

A grade of C or better is required in all courses in the minor.

PLPT 110 Fantastic Fungi - The Fatal and the Friendly

Description: A survey of the impact of fungi on human history and welfare. Topics include: fungi as agents of plant and human diseases; fungal toxins that impact food safety and indoor air quality; decay and decomposition; fungi as food and fermenters; medicinal fungi and metabolites; and mycorrhizae, mutualism and biodiversity.

Credit Hours: 3

Max credits per semester: 3

Max credits per degree: 3

Grading Option: Graded with Option

PLPT 210 Plant Pathogens and Disease

Prerequisites: PLAS 131, BIOS 101, ENTO 115, or LIFE 120.

Description: Introduction to fungi, bacteria, nematodes and viruses that cause plant diseases. The impact that plant diseases can have on society and the environment. Strategies used in managing plant diseases in agricultural and landscape environments.

Credit Hours: 2

Max credits per semester: 2

Max credits per degree: 2

Grading Option: Graded with Option

Prerequisite for: PLPT 400L

PLPT 270 Biological Invaders

Crosslisted with: PLAS 270, NRES 270

Prerequisites: 3 hrs biological sciences.

Description: Impact of exotic species and invasive organisms: agricultural and medical emerging disease; predicting biological invasions; biological control; regulatory, monitoring, and control efforts; ecological impact.

Credit Hours: 3

Max credits per semester: 3

Max credits per degree: 3

Grading Option: Graded with Option

PLPT 400 Intermediate Plant Pathology

Crosslisted with: BIOS 400, PLPT 800

Prerequisites: PLPT 210 or BIOS 312; concurrent enrollment in PLPT 400L

Description: Exploring the biology of plant pathogens, pathogen-host plant interactions, and environmental influences on plant diseases. Examining cultural, chemical, and biological strategies, along with host resistance, for plant disease management. Builds on topics covered in PLPT 210, with additional emphasis on the strategies employed by the four major groups of plant pathogens, plant responses to disease-causing organisms, and approaches to disease management.

Credit Hours: 3

Max credits per semester: 3

Max credits per degree: 3

Grading Option: Graded with Option

Offered: SPRING

PLPT 400L Intermediate Plant Pathology Lab

Prerequisites: PLPT 210 or BIOS 312; concurrent enrollment in PLPT 400

Notes: BIOS 314 recommended

Description: Companion lab for PLPT 400

Credit Hours: 1

Max credits per semester: 1

Max credits per degree: 1

Grading Option: Graded with Option

Offered: SPRING

PLPT 414 Turfgrass Disease Management

Crosslisted with: AGRO 814, HORT 814, PLAS 414, PLAS 414, TLMT 814

Prerequisites: BIOS/PLPT 369 or one semester of introductory plant pathology.

Description: Pathogens, epidemiology, and control of diseases specific to turfgrass.

Credit Hours: 1

Max credits per semester: 1

Max credits per degree: 1

Grading Option: Graded with Option
PLPT 415 Corn Diseases
Crosslisted with: PLPT 815
Prerequisites: PLPT 210 or PLPT 369 or equivalent
Notes: Taught online only. This is an 8-week mini-course.
Description: Introduction to the important diseases affecting corn (maize) in Nebraska and other areas of the United States. Pathogen biology, favorable conditions, disease diagnosis based on symptomatology and management strategies are emphasized.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded

PLPT 418 Microbial Genetics & Genomics
Crosslisted with: PLPT 818, Mbio 418
Prerequisites: BIOS 206 or PLAS 215.
Notes: BIOS 312 is recommended.
Description: Inheritance, exchange, and regulation of genes in prokaryotic microorganisms: gene structure and function; gene transfer and the elements (plasmids, phages, and transposons) involved; DNA mutations, repair, and genetic analysis; genome sequencing, microbial genome databases, and global gene expression analysis.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
ACE: ACE 10 Integrated Product

PLPT 495 Internship in Plant Pathology
Prerequisites: Junior standing.
Description: Experience in a work place setting that is directly related to Plant Pathology.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 5
Grading Option: Pass No Pass

PLPT 496 Independent Study
Prerequisites: Advanced approval of the plan of study and permission.
Description: Research, literature review, extension of course work, or preparation of teaching materials.
Credit Hours: 1-5
Min credits per semester: 1
Max credits per semester: 5
Max credits per degree: 5
Grading Option: Graded with Option

PLPT 498 Independent Research
Prerequisites: Permission.
Description: Independent research in areas of plant pathology.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option

PLPT 499H Honors Thesis
Prerequisites: Admission to the University Honors Program and permission
Notes: AGRI 299H recommended
Description: Conduct a scholarly research project and write a University Honors Program or undergraduate thesis.
Credit Hours: 3-6
Min credits per semester: 3
Max credits per semester: 6
Max credits per degree: 6
Grading Option: Graded

Career Information
The following represents a sample of the internships, jobs and graduate school programs that current students and recent graduates have reported.

Transferable Skills
- Communicate results of scientific experiments to scientific and non-scientific audiences
- Apply mathematical and scientific skills to solve real-world problems
- Make predictions using mathematical, statistical, and scientific modeling methods
- Define problems and identify causes
- Understand and use proper laboratory and technical skills and instruments
- Collaborate with a team to develop solutions
- Confidently navigate complex, ambiguous projects and environments
- Design and implement research experiments
- Document and replicate processes and procedures

Jobs of Recent Graduates
- North American Trait Integration Breeder, Monsanto - Chesterfield, MO
- Plant Protection Technician, USDA - Lincoln, NE
- Data Analyst, Zoex Corporation - Houston, TX
- Associate Sales Manager, Theisen Seed LLC - Atkinson, NE
- Distance Education Instructor, University of Nebraska-Lincoln - Lincoln, NE
- Site Manager, Sustainable Agriculture Education - Berkeley, CA
- Groundskeeper, Burr Oak Lodge - Eagle, NE
- Graduate Research Assistant, University of Nebraska-Lincoln - Lincoln, NE

Internships
- Intern, DuPont Pioneer - Johnston, IA
- Research Assistant, Plant Pathology, University of Nebraska-Lincoln - Lincoln, NE
- Cover Crop Research Intern, University of Nebraska-Lincoln - Lincoln, NE
- Research Intern, Nebraska Forest Service - Lincoln, NE
- Intern, Grassland Ecology - Wood River, NE
- Pioneer Sales Associate Intern, Theisen Seed LLC - Atkinson, NE
- Crop Production Intern, University of Nebraska-Lincoln - Lincoln, NE
- Research Intern, Molecular Plant Physiology, University of NebraskaLincoln - Lincoln, NE
Graduate & Professional Schools

- Ph.D., Genetics, Iowa State University - Ames, IA
- Ph.D., Evolutionary Ecology, Colorado State University - Fort Collins, CO
- Ph.D., Plant Breeding and Genetics, Purdue University - Lafayette, IN
- Ph.D., Entomology, University of Arkansas - Fayetteville, AR
- Ph.D., Agronomy and Horticulture, University of Nebraska-Lincoln - Lincoln, NE
- Master’s in Agronomy, University of Nebraska-Lincoln - Lincoln, NE
- Master’s in Plant Breeding and Genetics, University of Nebraska-Lincoln - Lincoln, NE
- Master’s in Biological Sciences, University of Nebraska-Lincoln - Lincoln, NE
- Master’s in Entomology and Plant Pathology, Colorado State University - Fort Collins, CO
- Master’s in Horticulture, University of Nebraska-Lincoln - Lincoln, NE
- Ph.D., Horticulture, University of Nebraska Lincoln - Lincoln, NE