FISHERIES & WILDLIFE

Description
 Website: http://snr.unl.edu/undergrad/majors/fish_wild/

Fisheries and wildlife (F&W) professionals are responsible for the conservation, protection, regulation, and management of our nation’s fish and wildlife resources. Their management strategies must provide for both consumptive (hunting, fishing) and non-consumptive uses (bird watching, non-game species enhancement, threatened and endangered species protection, conservation biology, zoo management, and others).

Students who successfully fulfill the requirements in the fisheries and wildlife degree program are prepared to enter postgraduate programs as well as competitively enter the workforce. The curriculum reflects the civil service requirements of the federal government for wildlife and fisheries biologists and incorporates course requirements for certification in professional societies. The breadth of the curriculum prepares graduates to address complex environmental issues and to interact professionally with a multitude of natural resources disciplines in order to develop solutions to problems. Typical careers for graduates of this degree program include fisheries biologist, wildlife biologist, law enforcement officer, ecologist, habitat manager, zookeeper, disease specialist, or research biologist with private consulting firms and zoos, or with governmental resource management agencies at the local, state, or federal level. Because this is a broad field, students should consult their advisor as they select one of the eight options.

College Requirements

College Admission
Requirements for admission into the College of Agricultural Sciences and Natural Resources (CASNR) are consistent with general University admission requirements (one unit equals one high school year): 4 units of English, 4 units of mathematics, 3 units of natural sciences, 3 units of social sciences, and 2 units of world language. Students must also meet performance requirements: a 3.0 cumulative high school grade point average OR an ACT composite of 20 or higher, writing portion not required OR a score of 1040 or higher on the SAT Critical Reading and Math sections OR rank in the top one-half of graduating class; transfer students must have a 2.0 (on a 4.0 scale) cumulative grade point average and 2.0 on the most recent term of attendance.

Admission Deficiencies/Removal of Deficiencies
Students who are admitted to CASNR with core course deficiencies must remove these deficiencies within the first 30 credit hours at the University of Nebraska–Lincoln, or within the first calendar year at Nebraska, whichever takes longer, excluding foreign languages. Students have up to 60 credit hours to remove world language deficiencies. College-level coursework taken to remove deficiencies may be used to meet degree requirements in CASNR.

Deficiencies in the required entrance subjects can be removed by the completion of specified courses in the University or by correspondence.

The Office of Admissions, Alexander Building (south entrance), City Campus, provides information to new students on how deficiencies can be removed.

College Degree Requirements

Curriculum Requirements
The curriculum requirements of the College consist of three areas: ACE (Achievement-Centered Education), College of Agricultural Sciences and Natural Resources Core, and Degree Program requirements and electives. All three areas of the College Curriculum Requirements are incorporated within the description of the Major/Degree Program sections of the catalog. The individual major/degree program listings of classes ensures that a student will meet the minimum curriculum requirements of the College.

World Languages/Language Requirement
Two units of a world language are required. This requirement is usually met with two years of high school language.

Experiential Learning
All undergraduates in the College of Agricultural Sciences and Natural Resources must take an Experiential Learning (EL) designated course. This may include 0-credit courses designed to document co-curricular activities recognized as Experiential Learning.

Minimum Hours Required for Graduation
The College grants the bachelors degree in programs associated with agricultural sciences, natural resources, and related programs. Students working toward a degree must earn at least 120 semester hours of credit.
A minimum cumulative grade point average of C (2.0 on a 4.0 scale) must be maintained throughout the course of studies and is required for graduation. Some degree programs have a higher cumulative grade point average required for graduation. Please check the degree program on its graduation cumulative grade point average.

Grade Rules

Removal of C-, D, and F Grades
Only the most recent letter grade received in a given course will be used in computing a student’s cumulative grade point average if the student has completed the course more than once and previously received a grade or grades below C in that course.

The previous grade (or grades) will not be used in the computation of the cumulative grade point average, but it will remain a part of the academic record and will appear on any transcript.
A student can remove from his/her cumulative average a course grade of C-, D+, D-, or F if the student repeats the same course at the University of Nebraska and receives a grade other than P (pass), I (incomplete), N (no pass), W (withdrew), or NR (no report). If a course is no longer being offered, it is not eligible for the revised grade point average computation process.

For complete procedures and regulations, see the Office of the University Registrar website at http://www.unl.edu/regrec/course-repeats (http://www.unl.edu/regrec/course-repeats/).

Pass/No Pass
Students in CASNR may take any course offered on a Pass/No Pass basis within the 24-hour limitation established by the Faculty Senate. However, a department may specify that the Pass/No Pass status of its courses be limited to non-majors or may choose to offer some courses for letter grades only.
GPA Requirements
A minimum cumulative grade point average of C (2.0 on a 4.0 scale) must be maintained throughout the course of studies and is required for graduation. Some degree programs have a higher cumulative grade point average required for graduation. Please check the degree program on its graduation cumulative grade point average.

Transfer Credit Rules
To be considered for admission a transfer student, Nebraska resident or nonresident, must have an accumulated average of C (2.0 on a 4.0 scale) and a minimum C average in the last semester of attendance at another college. Transfer students who have completed less than 12 credit hours of college study must submit either ACT or SAT scores.

Ordinarily, credits earned at an accredited college are accepted by the University. The College, however, will evaluate all hours submitted on an application for transfer and reserves the right to accept or reject any of them. Sixty (60) is the maximum number of hours the University will accept on transfer from a two-year college. Ninety (90) is the maximum number of hours the University will accept from a four-year college. Transfer credit in the degree program must be approved by the degree program advisor on a Request for Substitution Form to meet specific course requirements, group requirements, or course level requirements in the major. At least 9 hours in the major field, including the capstone course, must be completed at the University of Nebraska–Lincoln regardless of the number of hours transferred.

The College will accept no more than 10 semester hours of C, D+, D, and D- grades from other schools. The C-, D+, D, and D- grades can only be applied to free electives. This policy does not apply to the transfer of grades from UNO or UNK to the University of Nebraska–Lincoln.

Joint Academic Transfer Programs
The College of Agricultural Sciences and Natural Resources has agreements with many institutions to support joint academic programs. The transfer programs include dual degree programs and cooperative degree programs. Dual degree programs offer students the opportunity to receive a degree from a participating institution and also to complete the requirements for a bachelor of science degree in CASNR. Cooperative programs result in a single degree from either the University of Nebraska–Lincoln or the cooperating institution.

Dual Degree Programs
A to B Programs
The A to B Program, a joint academic program offered by the CASNR and participating community colleges, allows students to complete the first two years of a degree program at the participating community college and continue their education and study in a degree program leading toward a bachelor of science degree.

The A to B Program provides a basic knowledge plus specialized coursework. Students transfer into CASNR with junior standing.

Depending on the community college, students enrolled in the A to B Program may complete the requirements for an associate of science at the community college, transfer to the University of Nebraska–Lincoln, and work toward a bachelor of science degree.

Participating community colleges include:
- Central Community College
- Metropolitan Community College
- Mid-Plains Community College
- Northwest Community College
- Southeast Community College
- Western Nebraska Community College

3+2 Programs
Two specialized degree programs in animal science and veterinary science are offered jointly with an accredited college or school of veterinary medicine. These two programs permit CASNR animal science or veterinary science students to receive a bachelor of science degree from the University of Nebraska–Lincoln with a degree in animal science or veterinary science after successfully completing two years of the professional curriculum in veterinary medicine at an accredited veterinary school. Students who successfully complete the 3+2 Program, must provide transcripts and complete the Application for Degree form via MyRED. Students without MyRED access may apply for graduation in person at Husker Hub in the Canfield Administration Building, or by mail. Students should discuss these degree programs with their academic advisor.

Cooperative Degree Programs
Academic credit from the University and a cooperating institution are applied towards a four-year degree from either the University of Nebraska–Lincoln (University degree-granting program) or the cooperating institution (non-University degree-granting program). All have approved programs of study.

UNL Degree-Granting Programs
A University of Nebraska–Lincoln degree-granting program is designed to provide students the opportunity to complete a two-year program of study at one of the four-year institutions listed below, transfer to CASNR, and complete the requirements for a bachelor of science degree.

Chadron State College. Chadron State College offers a 2+2 program leading to a grassland ecology and management degree program and a transfer program leading to a bachelor of science in agricultural education in the teaching option.

Wayne State College. Wayne State College offers a 3+1 program leading to a bachelor of science in plant biology in the ecology and management option and a 3+1 program leading to a bachelor of science in Applied Science.

University of Nebraska at Kearney. Transfer programs are available for students pursuing degree programs leading to a bachelor of science degree.

University of Nebraska at Omaha. Transfer programs are available for students pursuing degree programs leading to a bachelor of science degree.

Non University of Nebraska–Lincoln Degree-Granting Programs
CASNR cooperates with other institutions to provide coursework that is applied towards a degree at the cooperating institution. Pre-professional programs offered by CASNR allow students to complete the first two or three years of a degree program at the University prior to transferring and completing a degree at the cooperating institution.

Chadron State College–Range Science. The 3+1 Program in range science allows Chadron State College students to pursue a range science degree through Chadron State College. Students complete three years of
coursework at Chadron State College and one year of specialized range science coursework (32 credit hours) at CASNR.

Dordt College (Iowa)–Agricultural Education: Teaching Option. This program allows students to pursue an Agricultural Education Teaching Option degree leading toward a bachelor of science in agricultural education. Students at Dordt College will complete 90 credit hours in the Agricultural Education: Teaching Option Transfer Program.

Residency
Students must complete at least 30 of the total hours for their degree using University of Nebraska–Lincoln credits. At least 18 of the 30 credit hours must be in courses offered through CASNR including the appropriate ACE 10 degree requirement or an approved ACE 10 substitution offered through another Nebraska college and excluding independent study regardless of the number of hours transferred. Credit earned during education abroad may be used toward the residency requirement if students register through the University of Nebraska–Lincoln and participate in prior-approved education abroad programs. The University of Nebraska–Lincoln open enrollment and summer independent study courses count toward residence.

Online and Distance Education
There are many opportunities to earn college credit online through the University of Nebraska–Lincoln. Some of these credits may be applicable not only as elective credits but also toward the fulfillment of the College’s education requirements. Credits earned online may count toward residency. However, certain offerings may not be counted toward scholarship requirements or academic recognition criteria.

For further information, contact:
Office of Online and Distance Education
University of Nebraska–Lincoln
305 Brace Labs
Lincoln, NE 68588-0109
402-472-4681
http://online.unl.edu/

Independent Study Rules
Students wishing to take part in independent studies must obtain permission; complete and sign a contract form; and furnish copies of the contract to the instructor, advisor, departmental office, and the Dean's Office. The contract should be completed before registration. Forms are available in 103 Agricultural Hall or online at the CASNR website.

Independent study projects include research, literature review or extension of coursework under the supervision and evaluation of a departmental faculty member.

Students may only count 12 hours of independent study toward their degrees and no more than 6 hours can be counted during their last 36 hours earned, excluding senior thesis, internships, and courses taught under an independent study number.

Other College Degree Requirements

Capstone Course Requirement
A capstone course is required for each CASNR degree program. A capstone course is defined as a course in which students are required to integrate diverse bodies of knowledge to solve a problem or formulate a policy of societal importance.

ACE Requirements
All students must fulfill the Achievement Centered Education (ACE) requirements. Information about the ACE program may be viewed at ace.unl.edu (https://ace.unl.edu/).

The minimum requirements of CASNR reflect the common core of courses that apply to students pursuing degrees in the college. Students should work with an advisor to satisfy ACE outcomes 1, 2, 3, 4, 6, and 10 with the college requirements.

Catalog Rule
Students must fulfill the requirements stated in the catalog for the academic year in which they are first admitted to the University of Nebraska–Lincoln or when they were first admitted to a Joint Academic Transfer Program. Students transferring from a community college, but without admission to a Joint Academic Transfer Program, may be eligible to fulfill the requirements as stated in the catalog for an academic year in which they were enrolled at the community college prior to attending the University of Nebraska-Lincoln. This decision should be made in consultation with academic advisors, provided the student a) was enrolled in a community college during the catalog year they are utilizing, b) maintained continuous enrollment at the previous institution for 1 academic year or more, and c) continued enrollment at the University of Nebraska-Lincoln within 1 calendar year from their last term at the previous institution. In consultation with advisors, a student may choose to follow a subsequent catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at the University of Nebraska-Lincoln in the College of Agricultural Sciences and Natural Resources. Students must complete all degree requirements from a single catalog year. The catalog which a student follows for degree requirements may not be more than 10 years old at the time of graduation.

Learning Outcomes
Graduates of fisheries and wildlife will be able to:

1. Describe and explain the basic characteristics of natural resource systems, which include humans, climate, hydrology, geology and biology, and use standard mapping systems and technology to locate those resources in space.
2. Use appropriate resources to identify (with scientific names) flora and/or fauna in at least two specialized groups (grassland plants, woody plants, invertebrates, reptiles/amphibians, birds, mammals, fish, etc.).
3. Construct graphical and tabular summaries of quantitative data, conduct simple statistical analyses of those data, and use mathematical concepts to represent the dynamics of natural resource systems.
4. Recommend appropriate management actions to achieve a habitat management or wildlife population objective.
5. Know the basic pieces of federal legislation relevant to fish and wildlife management (e.g., Endangered Species Act, Migratory Bird Act, National Environmental Planning Act) and how to incorporate their requirements into a natural resources planning process.
Major Requirements

Core Requirements

The following basic courses are required for students in fisheries and wildlife. In addition, students must select and meet the requirements of one of the options, depending on their individual interests and career objectives.

College Integrative Course (ACE 8)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIL 101</td>
<td>Science and Decision-Making for a Complex World</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 3

Mathematics (ACE 3)

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 104</td>
<td>Applied Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 106</td>
<td>Calculus I</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 3-5

Statistics

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 218</td>
<td>Introduction to Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 380</td>
<td>Statistics and Applications</td>
<td>1</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 3

Communications

Written Communication (ACE 1)

Select one course from ACE 1 (UNL approved list)

Oral Communication (ACE 2)

Select one course from ACE 2 (UNL approved list)

Communication/Interpersonal Skills Elective

Select one of the following:

Any additional UNL approved ACE 1 or ACE 2 course or from course list below:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEC 136</td>
<td>Fundamentals of Agricultural and Environmental Sciences Communication</td>
<td>3</td>
</tr>
<tr>
<td>ALEC 207</td>
<td>Communicating Science with Public Audiences</td>
<td>3</td>
</tr>
<tr>
<td>ALEC 305</td>
<td>Presentation Strategies to Communicate Agricultural and Environmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>ALEC 350</td>
<td>Agriculture, the Environment & Science in the Media</td>
<td>3</td>
</tr>
<tr>
<td>JOMC 101</td>
<td>Principles of Mass Media</td>
<td>3</td>
</tr>
<tr>
<td>MLSC 102</td>
<td>Basic Leadership & MLSC 202 and Leadership and Teamwork</td>
<td>3</td>
</tr>
<tr>
<td>MLSC 301</td>
<td>Leadership and Problem Solving</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 9

Economics, Humanities and Social Sciences (ACE 6)

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 200</td>
<td>Economic Essentials and Issues</td>
<td>3</td>
</tr>
<tr>
<td>ECON 211</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 212</td>
<td>Principles of Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>AECN 141</td>
<td>Introduction to the Economics of Agriculture</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one course each from ACE outcomes 5, 7, and 9

Credit Hours Subtotal: 12

Basic Sciences

Biological Sciences

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAS 215</td>
<td>Genetics</td>
<td>4</td>
</tr>
<tr>
<td>or BIOS 206</td>
<td>General Genetics</td>
<td>4</td>
</tr>
<tr>
<td>LIFE 120</td>
<td>Fundamentals of Biology I</td>
<td>4</td>
</tr>
<tr>
<td>& LIFE 120L</td>
<td>and Fundamentals of Biology I laboratory (ACE 4)</td>
<td>4</td>
</tr>
<tr>
<td>LIFE 121</td>
<td>Fundamentals of Biology II</td>
<td>4</td>
</tr>
<tr>
<td>& LIFE 121L</td>
<td>and Fundamentals of Biology II Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 207</td>
<td>Ecology and Evolution</td>
<td>3</td>
</tr>
<tr>
<td>NRES 220</td>
<td>Principles of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>& NRES 222</td>
<td>and Ecology Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Earth Sciences

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 100</td>
<td>Introduction to Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 101</td>
<td>Dynamic Earth</td>
<td>3</td>
</tr>
<tr>
<td>or GEOL 101</td>
<td>Honors: Physical Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 106</td>
<td>Environmental Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 109</td>
<td>Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 120</td>
<td>Geology of National Parks and Monuments</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 155</td>
<td>Elements of Physical Geography</td>
<td>3</td>
</tr>
<tr>
<td>SOIL 153</td>
<td>Soil Resources</td>
<td>2</td>
</tr>
<tr>
<td>PLAS 153</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 9

Physical Science

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 105A</td>
<td>Chemistry in Context I</td>
<td>3</td>
</tr>
<tr>
<td>& CHEM 105L</td>
<td>and Chemistry in Context I Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>& CHEM 106A</td>
<td>and Chemistry in Context II</td>
<td>3</td>
</tr>
<tr>
<td>& CHEM 106L</td>
<td>and Chemistry in Context II Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 109A</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>& CHEM 109L</td>
<td>and General Chemistry I Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>& CHEM 110A</td>
<td>and General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>& CHEM 110L</td>
<td>and General Chemistry II Laboratory</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGST 109</td>
<td>Physical Principles in Agriculture and Life Sciences</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 115</td>
<td>Descriptive Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 141</td>
<td>Elementary General Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 151</td>
<td>Elements of Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 211</td>
<td>General Physics I</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 3-5

Total Credit Hours 60-65

1. Course requires MATH 107.
2. SOIL 153 is strongly recommended for students in the Habitat Management, Wildlife Ecology and Management, Fisheries Ecology and Management options, and students pursuing a Water Science minor.
3. AGST 109 or PHYS 151 are recommended for students only taking one semester of physics.

Specific Major Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 101</td>
<td>Natural Resources Orientation</td>
<td>1</td>
</tr>
<tr>
<td>NRES 311</td>
<td>Wildlife Ecology and Management</td>
<td>3</td>
</tr>
<tr>
<td>NRES 315</td>
<td>Human Dimensions of Fish and Wildlife</td>
<td>3</td>
</tr>
</tbody>
</table>
Select one Natural Resource Policy course from the following: 3

AECN 345 Policy Issues in Agriculture and Natural Resources
AECN 357 / NREE 357 Natural Resource and Environmental Law
CRPL 470 Environmental Planning and Policy
NRES 323 Natural Resources Policy

Total Credit Hours 14

1 This course may be waived for students entering the major with more than 15 credit hours.

Conservation Biology Option
This option is designed for students considering careers in conservation, research biology, restoration ecology, and policy. Completion of this program also provides excellent preparation for graduate study.

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 416</td>
<td>Biodiversity Conservation</td>
</tr>
<tr>
<td>or NRES 450 / BIOS 450</td>
<td>Biology of Wildlife Populations</td>
</tr>
<tr>
<td>or NRES 462</td>
<td>Conservation Biology</td>
</tr>
<tr>
<td>NRES 211</td>
<td>Introduction to Conservation Biology</td>
</tr>
</tbody>
</table>

Select one ACE 10 (capstone) from the following: 3-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 433</td>
<td>Wildlife Management Techniques</td>
</tr>
<tr>
<td>NRES 441</td>
<td>Zoo Keeping and Management</td>
</tr>
<tr>
<td>NRES 463</td>
<td>Fisheries Science</td>
</tr>
</tbody>
</table>

Select one from the following: 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 233</td>
<td>Wildlife Field Techniques</td>
</tr>
<tr>
<td>NRES 463L</td>
<td>Fisheries Science Lab</td>
</tr>
</tbody>
</table>

Animal Courses

Select two of the following: 6-8

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 475</td>
<td>Avian Biology</td>
</tr>
<tr>
<td>BIOS 487</td>
<td>Field Parasitology</td>
</tr>
<tr>
<td>ENTO 402 / BIOS 485 / NRES 402 & ENTO 402L / BIOS 485L / NRES 402L</td>
<td>Aquatic Insects and Identification of Aquatic Insects</td>
</tr>
<tr>
<td>NRES 431</td>
<td>Waterfowl Ecology and Management</td>
</tr>
<tr>
<td>NRES 474 / BIOS 474</td>
<td>Herpetology</td>
</tr>
<tr>
<td>NRES 476 / BIOS 476</td>
<td>Mammalogy</td>
</tr>
<tr>
<td>NRES 482</td>
<td>Ecophysiology of Wildlife</td>
</tr>
<tr>
<td>NRES 489 / BIOS 489</td>
<td>Ichthyology</td>
</tr>
</tbody>
</table>

Plant Courses

Select two of the following: 6-8

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 471</td>
<td>Plant Systematics</td>
</tr>
<tr>
<td>NRES 201 / LARC 201 / PLAS 201</td>
<td>Dendrology: Study and Identification of Trees and Shrubs</td>
</tr>
</tbody>
</table>

Human Dimensions and Policy Course 3

Select one of the following: 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECN 265 / NREE 265</td>
<td>Resource and Environmental Economics I</td>
</tr>
<tr>
<td>AECN 357 / NREE 357</td>
<td>Natural Resource and Environmental Law</td>
</tr>
<tr>
<td>AECN 388 / ALEC 388</td>
<td>Ethics in Agriculture and Natural Resources</td>
</tr>
<tr>
<td>ANTH 473</td>
<td>Ecological Anthropology</td>
</tr>
<tr>
<td>ANTH 474 / GLST 474</td>
<td>Development in Theory and Practice</td>
</tr>
<tr>
<td>ENVR 249 / NRES 249</td>
<td>Individual and Cultural Perspectives on the Environment</td>
</tr>
<tr>
<td>NREE 456</td>
<td>Environmental Law</td>
</tr>
<tr>
<td>NREE 457 / AECN 457 / WATS 457</td>
<td>Water Law</td>
</tr>
<tr>
<td>NRES 323</td>
<td>Natural Resources Policy</td>
</tr>
<tr>
<td>PHIL 225</td>
<td>Environmental Ethics</td>
</tr>
<tr>
<td>SOCI 346</td>
<td>Environmental Sociology</td>
</tr>
<tr>
<td>SOCI 444</td>
<td>Population Dynamics</td>
</tr>
</tbody>
</table>

Geographic Information Science (GIS) Course

Select one of the following: 2-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 218</td>
<td>Introduction to Geospatial Technologies</td>
</tr>
<tr>
<td>NRES 415</td>
<td>GIS for Agriculture and Natural Resources</td>
</tr>
<tr>
<td>NRES 418 / GEOG 418</td>
<td>Introduction to Remote Sensing</td>
</tr>
<tr>
<td>NRES 427 / GEOG 427</td>
<td>Introduction to the Global Positioning System (GPS)</td>
</tr>
</tbody>
</table>
Fisheries & Wildlife

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 420 / GEOG 419 / GEOL 419 / PLAS 419</td>
<td>Applications of Remote Sensing in Agriculture and Natural Resources</td>
</tr>
<tr>
<td>GEOG 217</td>
<td>Principles of GIS</td>
</tr>
</tbody>
</table>

Select one of the following:

- NRES 399 Independent Research
- NRES 496 Independent Study
- NRES 497 Career Experiences in Natural Resource Sciences
- NRES 499 Thesis Research
- NRES 499H Honors Thesis

Credit Hours Subtotal: 28-37

Free Electives

Select 17 hours, recommended electives include:

- BIOS 462 Animal Behavior
- BIOS 472 Evolution
- BIOS 487 Field Parasitology
- NRES 208 Climate Literacy in Natural Resources
- NRES 270 / PLAS 270 / PLPT 270 Biological Invaders
- NRES 308 / GEOG 308 / GEOL 308 Biogeography
- NRES 348 Wildlife Damage Management
- NRES 388 / AGRI 388 Employment Seminar
- NRES 413 / ALEC 410 Environmental Leadership
- NRES 428 / ALEC 428 Leadership in Public Organizations
- NRES 434 / ENVR 434 Environmental Education and Interpretation
- NRES 438 Grassland Conservation: Planning and Management
- NRES 450 / BIOS 450 Biology of Wildlife Populations
- NRES 459 / BIOS 459 / WATS 459 Limnology
- PLAS 489 / CRPL 489 Urbanization of Rural Landscapes
- NRES 482 Ecophysiology of Wildlife
- NRES 463 Fisheries Science
- NRES 463L Fisheries Science Lab (Capstone experience, ACE 10)
- NRES 489 / BIOS 489 Ichthyology

Animal Course

Select one of the following:

- NRES 201 / LARC 201 / PLAS 201 Dendrology: Study and Identification of Trees and Shrubs
- NRES 245 / PLAS 245 Introduction to Grassland Ecology and Management
- NRES 270 / PLAS 270 / PLPT 270 Biological Invaders
- NRES 302 / PLAS 302 Tree Biology
- NRES 310 Introduction to Forest Management
- NRES 424 Forest Ecology
- NRES 426 / PLAS 426 Invasive Plants
- NRES 440 / GRAS 440 / GRN 440 Great Plains Ecosystem

Credit Hours Subtotal: 17

Total Credit Hours

45-54

1. *This requirement cannot be used to satisfy the Natural Resource Policy course requirement. Students in the Conservation Biology Option must take this requirement in addition to the Natural Resource Policy course requirement.

 Students should select sociology or other social science courses for their ACE requirements to meet prerequisites for these upper level SOCI or ANTH courses.*

Fisheries Ecology and Management Option

This option is designed for students considering careers in fisheries biology, biological research, and fisheries management. Completion of this program also provides excellent preparation for graduate study.

Students completing the Fisheries Ecology and Management Option qualify for professional certification in the American Fisheries Society (AFS). Students are encouraged to consult with their advisor and the AFS website for further information. AFS requires a minimum grade of a C to receive credit for courses that apply toward professional certification.

Requirements

- NRES 459 / BIOS 459 / WATS 459 Limnology
- NRES 463 Fisheries Science
- NRES 463L Fisheries Science Lab (Capstone experience, ACE 10)
- NRES 489 / BIOS 489 Ichthyology

Animal Course

Select one of the following:

- NRES 201 / LARC 201 / PLAS 201 Dendrology: Study and Identification of Trees and Shrubs
- NRES 245 / PLAS 245 Introduction to Grassland Ecology and Management
- NRES 270 / PLAS 270 / PLPT 270 Biological Invaders
- NRES 302 / PLAS 302 Tree Biology
- NRES 310 Introduction to Forest Management
- NRES 424 Forest Ecology
- NRES 426 / PLAS 426 Invasive Plants
- NRES 440 / GRAS 440 / GRN 440 Great Plains Ecosystem

Credit Hours Subtotal: 17
<table>
<thead>
<tr>
<th>Course Code(s)</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAS 442 /</td>
<td>Wildland Plants</td>
</tr>
<tr>
<td>GRAS 442 /</td>
<td></td>
</tr>
<tr>
<td>NRES 442 /</td>
<td></td>
</tr>
<tr>
<td>RNGE 442</td>
<td></td>
</tr>
<tr>
<td>NRES 444</td>
<td>Ecosystem Monitoring and Assessment</td>
</tr>
</tbody>
</table>

Water Resource Course

Select one of the following: 3-4

- METR 100 Weather and Climate
- NRES 208 Climate Literacy in Natural Resources
- NRES 281 / GEOG 281 / WATS 281 Introduction to Water Science

Aquatic Ecology Course

Select one of the following: 2-4

- NRES 402 / ENTO 402 / BIOS 485 Aquatic Insects & NRES 402L / ENTO 402L / BIOS 485L and Identification of Aquatic Insects
- NRES 453 Hydrology
- NRES 457 / PLAS 457 Green Space and Urban Forestry Management
- NRES 459 / BIOS 459 / WATS 459 Limnology
- NRES 468 / BIOS 458 / BSEN 468 / WATS 468 Wetlands
- NRES 481 / BIOS 481 / WATS 481 Stream and River Ecology
- WATS 354 / AGST 354 / SOIL 354 Soil Conservation and Watershed Management

Geographic Information Science (GIS) Courses

Select one of the following: 2-4

- NRES 218 Introduction to Geospatial Technologies
- NRES 415 GIS for Agriculture and Natural Resources
- NRES 418 / GEOG 418 Introduction to Remote Sensing
- NRES 427 / GEOG 427 Introduction to the Global Positioning System (GPS)
- NRES 420 / GEOG 419 / GEOL 419 / PLAS 419 Applications of Remote Sensing in Agriculture and Natural Resources
- GEOG 217 Principles of GIS

Select one of the following: 1-3

- NRES 399 Independent Research
- NRES 496 Independent Study
- NRES 497 Career Experiences in Natural Resource Sciences
- NRES 499 Thesis Research
- NRES 499H Honors Thesis

Credit Hours Subtotal: 23-31

Free Electives

Select 21 hours, recommended electives include: 21

- AECN 265 / NREE 265 Resource and Environmental Economics I
- BIOS 381 Invertebrate Zoology
- BIOS 454 / NRES 454 Ecological Interactions
- BIOS 462 Animal Behavior
- BIOS 472 Evolution
- BIOS 475 Avian Biology
- BIOS 474 / NRES 474 Herpetology
- BIOS 476 / NRES 476 Mammalogy
- BIOS 487 Field Parasitology
- ENTO 402 / NRES 402 / ENTO 402L / NRES 402L Aquatic Insects & Identification of Aquatic Insects
- NRES 211 Introduction to Conservation Biology
- NRES 270 / PLAS 270 / PLPT 270 Biological Invaders
- NRES 308 / GEOG 308 / GEOL 308 Biogeography
- NRES 388 / AGRI 388 Employment Seminar
- NRES 428 / ALEC 428 Leadership in Public Organizations
- NRES 433 / NRES 233 Wildlife Management Techniques & Wildlife Field Techniques
- NRES 434 / ENVR 434 Environmental Education and Interpretation
- NRES 450 / BIOS 450 Biology of Wildlife Populations
- NRES 482 Ecophysiology of Wildlife
- NRES 484 / GEOG 484 / GEOL 484 / PLAS 484 / WATS 484 Water Resources Seminar
- NRES 487 / LARC 487 Introduction to Landscape Ecology
- NRES 489 / BIOS 489 Ichthyology
- NRES 492 International Study Tours in Natural Resource Management
- PHIL 225 Environmental Ethics
- PLAS 489 / CRPL 489 Urbanization of Rural Landscapes
And/or any optional courses listed but not taken under the Core courses, Fisheries and Wildlife courses, or Option Requirements headings in this program.

Credit Hours Subtotal: 21

Total Credit Hours 44-52

Habitat Management Option
This option is designed for students considering careers in habitat management, private lands management, or public lands (e.g., National Wildlife Refuge) management. Completion of this program also provides excellent preparation for graduate study.

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 438</td>
<td>Grassland Conservation: Planning and Management (Capstone experience, ACE 10)</td>
<td>3</td>
</tr>
<tr>
<td>or NRES 457 / PLAS 457</td>
<td>Green Space and Urban Forestry Management</td>
<td>1</td>
</tr>
<tr>
<td>NRES 233</td>
<td>Wildlife Field Techniques</td>
<td>1</td>
</tr>
<tr>
<td>or NRES 463L</td>
<td>Fisheries Science Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Animal Course
Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 475</td>
<td>Avian Biology</td>
</tr>
<tr>
<td>NRES 431</td>
<td>Waterfowl Ecology and Management</td>
</tr>
<tr>
<td>NRES 474 / BIOS 474</td>
<td>Herpetology</td>
</tr>
<tr>
<td>NRES 476 / BIOS 476</td>
<td>Mammalogy</td>
</tr>
<tr>
<td>NRES 482</td>
<td>Ecophysiology of Wildlife</td>
</tr>
<tr>
<td>NRES 489 / BIOS 489</td>
<td>Ichthyology</td>
</tr>
</tbody>
</table>

Plant ID Course
Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 201 / LARC 201 / PLAS 201</td>
<td>Tree Biology</td>
</tr>
<tr>
<td>NRES 457 / PLAS 457</td>
<td>Invasive Plants</td>
</tr>
<tr>
<td>PLAS 212 / LARC 212 / NRES 212</td>
<td>Woody Plants for Landscapes: Identification, Management, and Use</td>
</tr>
<tr>
<td>PLAS 442 / GRAS 442 / NRES 442 / RNGE 442</td>
<td>Wildland Plants</td>
</tr>
</tbody>
</table>

Geographic Information Science (GIS) Course
Select one of the following: 2-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 218</td>
<td>Introduction to Geospatial Technologies</td>
</tr>
<tr>
<td>NRES 415</td>
<td>GIS for Agriculture and Natural Resources</td>
</tr>
<tr>
<td>NRES 418 / GEOG 418</td>
<td>Introduction to Remote Sensing</td>
</tr>
<tr>
<td>NRES 427 / GEOG 427</td>
<td>Introduction to the Global Positioning System (GPS)</td>
</tr>
<tr>
<td>NRES 420 / GEOG 419 / GEOL 419 / PLAS 419</td>
<td>Applications of Remote Sensing in Agriculture and Natural Resources</td>
</tr>
</tbody>
</table>

GEOG 217 | Principles of GIS

Grassland Systems Course
Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 245 / PLAS 245</td>
<td>Introduction to Grassland Ecology and Management</td>
</tr>
<tr>
<td>RNGE 440 / PLAS 440 / GRAS 440 / NRES 440</td>
<td>Great Plains Ecosystem</td>
</tr>
<tr>
<td>RNGE 444 / PLAS 444 / GRAS 444 / NRES 444</td>
<td>Ecosystem Monitoring and Assessment</td>
</tr>
</tbody>
</table>

Forest Systems Course
Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 302 / PLAS 302</td>
<td>Tree Biology</td>
</tr>
<tr>
<td>NRES 310</td>
<td>Introduction to Forest Management</td>
</tr>
<tr>
<td>NRES 417 / PLAS 418</td>
<td>Agroforestry Systems in Sustainable Agriculture</td>
</tr>
<tr>
<td>NRES 424</td>
<td>Forest Ecology</td>
</tr>
</tbody>
</table>

Aquatic Systems Course
Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 457 / GEOL 457</td>
<td>Ecosystem Ecology</td>
</tr>
<tr>
<td>NRES 453</td>
<td>Hydrology</td>
</tr>
<tr>
<td>NRES 459 / BIOS 459 / WATS 459</td>
<td>Limnology</td>
</tr>
<tr>
<td>NRES 463 & NRES 463L</td>
<td>Fisheries Science and Fisheries Science Lab</td>
</tr>
<tr>
<td>NRES 468 / BIOS 458 / BSEN 468 / WATS 468</td>
<td>Wetlands</td>
</tr>
<tr>
<td>NRES 481 / BIOS 481 / WATS 481</td>
<td>Stream and River Ecology</td>
</tr>
<tr>
<td>WATS 281 / GEOG 281 / NRES 281</td>
<td>Introduction to Water Science</td>
</tr>
<tr>
<td>WATS 354 / AGST 354 / SOIL 354</td>
<td>Soil Conservation and Watershed Management</td>
</tr>
</tbody>
</table>

Soil Science Course
Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAS 269 / SOIL 269</td>
<td>Principles of Soil Management</td>
</tr>
<tr>
<td>PLAS 477 / GEOG 467 / NRES 477 / SOIL 477</td>
<td>Great Plains Field Pedology</td>
</tr>
<tr>
<td>AGST 354 / SOIL 354 / WATS 354</td>
<td>Soil Conservation and Watershed Management</td>
</tr>
</tbody>
</table>

Production Systems Course
Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAS 204</td>
<td>Resource-Efficient Crop Management</td>
<td>3</td>
</tr>
<tr>
<td>PLAS 435</td>
<td>Agroecology</td>
<td>3</td>
</tr>
<tr>
<td>NRES 435</td>
<td>Arboriculture: Maintenance & Selection of Landscape Trees</td>
<td>3</td>
</tr>
<tr>
<td>NRES 361</td>
<td>Soils, Environment and Water Quality</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 361</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PLAS 361</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>SOIL 361</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>WATS 361</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Wildlife Focus Courses

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 211</td>
<td>Introduction to Conservation Biology</td>
<td>3</td>
</tr>
<tr>
<td>NRES 270</td>
<td>Biological Invaders</td>
<td>3</td>
</tr>
<tr>
<td>PLAS 270</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PLPT 270</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>NRES 348</td>
<td>Wildlife Damage Management</td>
<td>3</td>
</tr>
<tr>
<td>NRES 431</td>
<td>Waterfowl Ecology and Management</td>
<td>3</td>
</tr>
<tr>
<td>NRES 433</td>
<td>Wildlife Management Techniques</td>
<td>3</td>
</tr>
<tr>
<td>NRES 441</td>
<td>Zoo Keeping and Management</td>
<td>3</td>
</tr>
<tr>
<td>NRES 450</td>
<td>Biology of Wildlife Populations</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 450</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>NRES 462</td>
<td>Conservation Biology</td>
<td>3</td>
</tr>
<tr>
<td>NRES 463</td>
<td>Fisheries Science</td>
<td>3</td>
</tr>
<tr>
<td>NRES 474</td>
<td>Herpetology</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 474</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>NRES 476</td>
<td>Mammalogy</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 476</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>NRES 482</td>
<td>Ecophysiology of Wildlife</td>
<td>3</td>
</tr>
<tr>
<td>NRES 489</td>
<td>Ichthyology</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 489</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 399</td>
<td>Independent Research</td>
<td>1-3</td>
</tr>
<tr>
<td>NRES 496</td>
<td>Independent Study</td>
<td>3</td>
</tr>
<tr>
<td>NRES 497</td>
<td>Career Experiences in Natural Resource Sciences</td>
<td>3</td>
</tr>
<tr>
<td>NRES 499</td>
<td>Thesis Research</td>
<td>3</td>
</tr>
<tr>
<td>NRES 499H</td>
<td>Honors Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 31-42

Free Electives

Select 11 hours, recommended electives include:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECN 265</td>
<td>Resource and Environmental Economics I</td>
<td>3</td>
</tr>
<tr>
<td>NREE 265</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BIOS 475</td>
<td>Avian Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 485</td>
<td>Aquatic Insects</td>
<td>3</td>
</tr>
<tr>
<td>NRES 402</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENTO 402</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Law Enforcement Option

This option is designed for students considering careers in wildlife law enforcement. Completion of this program also provides excellent preparation for entry into law enforcement academies.

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRIM 101</td>
<td>Survey of Criminal Justice</td>
<td>3</td>
</tr>
<tr>
<td>CRIM 203</td>
<td>Police and Society</td>
<td>3</td>
</tr>
<tr>
<td>CRIM 211</td>
<td>The Criminal Court System</td>
<td>3</td>
</tr>
<tr>
<td>FORS 120</td>
<td>Introduction to Forensic Science</td>
<td>2</td>
</tr>
<tr>
<td>NRES 348</td>
<td>Wildlife Damage Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one ACE 10 (capstone) from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 433</td>
<td>Wildlife Management Techniques</td>
<td>3</td>
</tr>
<tr>
<td>NRES 465</td>
<td>Fisheries Science</td>
<td>3</td>
</tr>
<tr>
<td>CRIM 496</td>
<td>Issues in Crime and Justice</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 233</td>
<td>Wildlife Field Techniques</td>
<td>3</td>
</tr>
<tr>
<td>NRES 463L</td>
<td>Fisheries Science Lab</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two of any 300- or 400-level CRIM courses

Animal Course

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 431</td>
<td>Waterfowl Ecology and Management</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 475</td>
<td>Avian Biology</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>NRES 474 / BIOS 474</td>
<td>Herpetology</td>
<td></td>
</tr>
<tr>
<td>NRES 476 / BIOS 476</td>
<td>Mammalogy</td>
<td></td>
</tr>
<tr>
<td>NRES 489 / BIOS 489</td>
<td>Ichthyology</td>
<td></td>
</tr>
</tbody>
</table>

Plant Course

Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 201 / LARC 201 / PLAS 201</td>
<td>Dendrology: Study and Identification of Trees and Shrubs</td>
</tr>
<tr>
<td>NRES 245 / PLAS 245</td>
<td>Introduction to Grassland Ecology and Management</td>
</tr>
<tr>
<td>NRES 270 / PLAS 270 / PLPT 270</td>
<td>Biological Invaders</td>
</tr>
<tr>
<td>NRES 302 / PLAS 302</td>
<td>Tree Biology</td>
</tr>
<tr>
<td>NRES 321 / PLAS 321</td>
<td>Arboriculture: Maintenance & Selection of Landscape Trees</td>
</tr>
<tr>
<td>PLAS 440 / GRAS 440 / NRES 440 / RNGE 440</td>
<td>Great Plains Ecosystem</td>
</tr>
<tr>
<td>PLAS 442 / GRAS 442 / NRES 442 / RNGE 442</td>
<td>Wildland Plants</td>
</tr>
<tr>
<td>PLAS 212 / LARC 212 / NRES 212</td>
<td>Woody Plants for Landscapes: Identification, Management, and Use</td>
</tr>
<tr>
<td>PLAS 214 / NRES 214</td>
<td>Herbaceous Landscape Plants</td>
</tr>
<tr>
<td>NRES 310</td>
<td>Introduction to Forest Management</td>
</tr>
<tr>
<td>NRES 417 / PLAS 418</td>
<td>Agroforestry Systems in Sustainable Agriculture</td>
</tr>
<tr>
<td>NRES 424</td>
<td>Forest Ecology</td>
</tr>
<tr>
<td>NRES 426 / PLAS 426</td>
<td>Invasive Plants</td>
</tr>
<tr>
<td>NRES 435 / PLAS 435</td>
<td>Agroecology</td>
</tr>
</tbody>
</table>

Geographic Information Science (GIS) Courses

Select one of the following: 2-4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 218</td>
<td>Introduction to Geospatial Technologies</td>
</tr>
<tr>
<td>NRES 415</td>
<td>GIS for Agriculture and Natural Resources</td>
</tr>
<tr>
<td>NRES 418 / GEOG 418</td>
<td>Introduction to Remote Sensing</td>
</tr>
<tr>
<td>NRES 427 / GEOG 427</td>
<td>Introduction to the Global Positioning System (GPS)</td>
</tr>
<tr>
<td>NRES 420 / GEOG 419 / GEOL 419 / PLAS 419</td>
<td>Applications of Remote Sensing in Agriculture and Natural Resources</td>
</tr>
<tr>
<td>GEOG 217</td>
<td>Principles of GIS</td>
</tr>
</tbody>
</table>

Select one of the following: 1-3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 399</td>
<td>Independent Research</td>
</tr>
</tbody>
</table>

Free Electives

Select 13 hours, recommended electives include: 13

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTO 414 / FORS 414</td>
<td>Forensic Entomology</td>
</tr>
<tr>
<td>FORS 120L</td>
<td>Introduction to Forensic Science Laboratory</td>
</tr>
<tr>
<td>FORS 400 & FORS 400L</td>
<td>Crime Scene Investigation and Crime Scene Investigation Laboratory</td>
</tr>
<tr>
<td>FORS 401 & FORS 401L</td>
<td>Forensic Biology and Forensic Biology Laboratory</td>
</tr>
<tr>
<td>FORS 445</td>
<td>Human Remains in Forensic Science</td>
</tr>
<tr>
<td>NRES 211</td>
<td>Introduction to Conservation Biology</td>
</tr>
<tr>
<td>NRES 270 / PLAS 270 / PLPT 270</td>
<td>Biological Invaders</td>
</tr>
<tr>
<td>NRES 388 / AGRI 388</td>
<td>Employment Seminar</td>
</tr>
<tr>
<td>NRES 428 / ALEC 428</td>
<td>Leadership in Public Organizations</td>
</tr>
<tr>
<td>NRES 431</td>
<td>Waterfowl Ecology and Management</td>
</tr>
<tr>
<td>NRES 433</td>
<td>Wildlife Management Techniques</td>
</tr>
<tr>
<td>NRES 434 / ENVR 434</td>
<td>Environmental Education and Interpretation</td>
</tr>
<tr>
<td>NRES 438</td>
<td>Grassland Conservation: Planning and Management</td>
</tr>
<tr>
<td>NRES 446 / FORS 446</td>
<td>Pollen Analysis for Behavioral, Biological and Forensic Science</td>
</tr>
<tr>
<td>NRES 450 / BIOS 450</td>
<td>Biology of Wildlife Populations</td>
</tr>
<tr>
<td>NRES 459 / BIOS 459 / WATS 459</td>
<td>Limnology</td>
</tr>
<tr>
<td>NRES 463</td>
<td>Fisheries Science</td>
</tr>
<tr>
<td>NRES 492</td>
<td>International Study Tours in Natural Resource Management</td>
</tr>
<tr>
<td>NRES 495 / ENTO 495 / GRAS 495 / PLAS 495 / RNGE 495 / SOIL 495</td>
<td>Grasslands Seminar</td>
</tr>
<tr>
<td>NRES 496</td>
<td>Independent Study</td>
</tr>
<tr>
<td>PHIL 225</td>
<td>Environmental Ethics</td>
</tr>
<tr>
<td>SOCI 209</td>
<td>Sociology of Crime</td>
</tr>
<tr>
<td>SOCI 241 / AECN 276</td>
<td>Rural Sociology</td>
</tr>
<tr>
<td>SOCI 261 / POLS 261</td>
<td>Conflict and Conflict Resolution</td>
</tr>
<tr>
<td>SOCI 346</td>
<td>Environmental Sociology</td>
</tr>
</tbody>
</table>
And/or any optional courses listed but not taken under the Core courses, Fisheries and Wildlife courses, or Option Requirements headings in this program.

Credit Hours Subtotal: 13

Total Credit Hours: 46-53

Wildlife Ecology and Management Option

This option is designed for students considering careers in wildlife biology, wildlife ecology, wildlife research, or wildlife management. Completion of this program also provides excellent preparation for graduate study.

This option was designed to meet the certification requirements of The Wildlife Society as an associate wildlife biologist. Students should refer to The Wildlife Society’s guidelines for certification during their academic career to keep current with any changes in these requirements. See www.wildlife.org (http://www.wildlife.org) for more details.

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 208</td>
<td>Climate Literacy in Natural Resources</td>
<td>3-4</td>
</tr>
<tr>
<td>or METR 100</td>
<td>Weather and Climate</td>
<td></td>
</tr>
<tr>
<td>or METR 140</td>
<td>Severe and Unusual Weather</td>
<td></td>
</tr>
<tr>
<td>or NRES 104</td>
<td>Climate in Crisis</td>
<td></td>
</tr>
<tr>
<td>or NRES 481 / BIOS 481 / WATS 481</td>
<td>Stream and River Ecology</td>
<td></td>
</tr>
<tr>
<td>or WATS 281 / GEOG 281 / NRES 281</td>
<td>Introduction to Water Science</td>
<td></td>
</tr>
<tr>
<td>NRES 433</td>
<td>Wildlife Management Techniques and Wilderness Field Techniques (Capstone experience, ACE 10)</td>
<td>4</td>
</tr>
<tr>
<td>NRES 450 / BIOS 450</td>
<td>Biology of Wildlife Populations</td>
<td>4</td>
</tr>
</tbody>
</table>

Terrestrial Vertebrate Animal Courses

Select two of the following: 7-8

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 475</td>
<td>Avian Biology</td>
</tr>
<tr>
<td>NRES 431</td>
<td>Waterfowl Ecology and Management</td>
</tr>
<tr>
<td>NRES 474 / BIOS 474</td>
<td>Herpetology</td>
</tr>
<tr>
<td>NRES 476 / BIOS 476</td>
<td>Mammalogy</td>
</tr>
<tr>
<td>NRES 482</td>
<td>Ecophysiology of Wildlife</td>
</tr>
</tbody>
</table>

Plant Course

Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAS 440 / GRAS 440 / NRES 440 / RNGE 440</td>
<td>Great Plains Ecosystem</td>
</tr>
<tr>
<td>or PLAS 442 / GRAS 442 / NRES 442 / RNGE 442</td>
<td>Wildland Plants</td>
</tr>
<tr>
<td>or NRES 245 / PLAS 245</td>
<td>Introduction to Grassland Ecology and Management</td>
</tr>
<tr>
<td>or NRES 302 / PLAS 302</td>
<td>Tree Biology</td>
</tr>
<tr>
<td>or NRES 310</td>
<td>Introduction to Forest Management</td>
</tr>
<tr>
<td></td>
<td>NRES 321 / PLAS 321 Arboriculture: Maintenance & Selection of Landscape Trees</td>
</tr>
<tr>
<td></td>
<td>NRES 417 / PLAS 418 Agroforestry Systems in Sustainable Agriculture</td>
</tr>
<tr>
<td></td>
<td>NRES 424 Forest Ecology</td>
</tr>
<tr>
<td></td>
<td>NRES 426 / PLAS 426 Invasive Plants</td>
</tr>
<tr>
<td></td>
<td>NRES 435 / PLAS 435 Agroecology</td>
</tr>
</tbody>
</table>

Plant ID or Taxonomy Course

Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAS 442 / GRAS 442 / NRES 442 / RNGE 442</td>
<td>Ecosystem Monitoring and Assessment</td>
</tr>
<tr>
<td>or NRES 201 / LARC 201 / PLAS 201</td>
<td>Dendrology: Study and Identification of Trees and Shrubs</td>
</tr>
<tr>
<td>or NRES 426 / PLAS 426</td>
<td>Invasive Plants</td>
</tr>
</tbody>
</table>

Geographic Information Science (GIS) Course

Select one of the following: 2-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 218</td>
<td>Introduction to Geospatial Technologies</td>
</tr>
<tr>
<td>NRES 415</td>
<td>GIS for Agriculture and Natural Resources</td>
</tr>
<tr>
<td>NRES 418 / GEOG 418</td>
<td>Introduction to Remote Sensing</td>
</tr>
<tr>
<td>or NRES 420 / GEOG 419 / GEOL 419 / PLAS 419</td>
<td>Applications of Remote Sensing in Agriculture and Natural Resources</td>
</tr>
<tr>
<td>or NRES 427 / GEOG 427 / GEOL 419 / PLAS 419</td>
<td>Introduction to the Global Positioning</td>
</tr>
<tr>
<td></td>
<td>GEOG 217 Principles of GIS</td>
</tr>
</tbody>
</table>

Additional Written Communication Course

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any ACE 1 course</td>
<td>Environmental Communication Skills</td>
</tr>
<tr>
<td>NRES 301</td>
<td></td>
</tr>
</tbody>
</table>

Additional Policy Requirement

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>One course from the list of policy courses under Fisheries and Wildlife courses</td>
<td></td>
</tr>
<tr>
<td>NREE 456 / AECN 456</td>
<td>Environmental Law</td>
</tr>
<tr>
<td>NREE 457 / AECN 457 / WATS 457</td>
<td>Water Law</td>
</tr>
</tbody>
</table>

Select one of the following: 1-3

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 399</td>
<td>Independent Research</td>
</tr>
<tr>
<td>NRES 496</td>
<td>Independent Study</td>
</tr>
<tr>
<td>NRES 497</td>
<td>Career Experiences in Natural Resource Sciences</td>
</tr>
<tr>
<td></td>
<td>NRES 499 Thesis Research</td>
</tr>
</tbody>
</table>
NRES 499H Honors Thesis
Credit Hours Subtotal: 33-41

Free Electives
Select 12 hours, recommended electives include:
12

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECN 265 / NREE 265</td>
<td>Resource and Environmental Economics I</td>
</tr>
<tr>
<td>PLAS 489 / CRPL 489</td>
<td>Urbanization of Rural Landscapes</td>
</tr>
<tr>
<td>BIOS 454 / NRES 454</td>
<td>Ecological Interactions</td>
</tr>
<tr>
<td>BIOS 462</td>
<td>Animal Behavior</td>
</tr>
<tr>
<td>BIOS 472</td>
<td>Evolution</td>
</tr>
<tr>
<td>BIOS 487</td>
<td>Field Parasitology</td>
</tr>
<tr>
<td>NRES 270</td>
<td>Biological Invaders</td>
</tr>
<tr>
<td>PLAS 270</td>
<td></td>
</tr>
<tr>
<td>PLPT 270</td>
<td></td>
</tr>
<tr>
<td>NRES 308 / GEOG 308 / GEOL 308</td>
<td>Biogeography</td>
</tr>
<tr>
<td>NRES 348</td>
<td>Wildlife Damage Management</td>
</tr>
<tr>
<td>NRES 388 / AGRI 388</td>
<td>Employment Seminar</td>
</tr>
<tr>
<td>NRES 428 / ALEC 428</td>
<td>Leadership in Public Organizations</td>
</tr>
<tr>
<td>NRES 434 / ENVR 434</td>
<td>Environmental Education and Interpretation</td>
</tr>
<tr>
<td>NRES 459 / BIOS 459 / WATS 459</td>
<td>Limnology</td>
</tr>
<tr>
<td>NRES 463</td>
<td>Fisheries Science</td>
</tr>
<tr>
<td>& NRES 463L</td>
<td>and Fisheries Science Lab</td>
</tr>
<tr>
<td>NRES 468 / BIOS 458 / BSEN 468 / WATS 468</td>
<td>Wetlands</td>
</tr>
<tr>
<td>NRES 482</td>
<td>Ecophysiology of Wildlife</td>
</tr>
<tr>
<td>NRES 484 / GEOG 484 / GEOL 484 / PLAS 484 / WATS 484</td>
<td>Water Resources Seminar</td>
</tr>
<tr>
<td>NRES 487 / LARC 487</td>
<td>Introduction to Landscape Ecology</td>
</tr>
<tr>
<td>NRES 489 / BIOS 489</td>
<td>Ichthyology</td>
</tr>
<tr>
<td>NRES 492</td>
<td>International Study Tours in Natural Resource Management</td>
</tr>
<tr>
<td>NRES 495 / ENTO 495 / GRAS 495 / PLAS 495 / RNGE 495 / SOIL 495</td>
<td>Grasslands Seminar</td>
</tr>
<tr>
<td>PHIL 225</td>
<td>Environmental Ethics</td>
</tr>
</tbody>
</table>

And/or any optional courses listed but not taken under the Core courses, Fisheries and Wildlife courses, or Option Requirements headings in this program.

Credit Hours Subtotal: 12

Total Credit Hours: 45-53

Zoo Animal Care Option
This option is designed for students considering careers in zookeeping, zoo animal care, environmental education, animal rehabilitation, and animal training. Completion of this program also provides excellent preparation for graduate study.

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 211</td>
<td>Introduction to Conservation Biology</td>
<td>3</td>
</tr>
<tr>
<td>NRES 233</td>
<td>Wildlife Field Techniques</td>
<td>1</td>
</tr>
<tr>
<td>or NRES 463L</td>
<td>Fisheries Science Lab</td>
<td></td>
</tr>
<tr>
<td>NRES 441</td>
<td>Zoo Keeping and Management (Capstone experience, ACE 10)</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:
1-3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 399</td>
<td>Independent Research</td>
</tr>
<tr>
<td>NRES 496</td>
<td>Independent Study</td>
</tr>
<tr>
<td>NRES 497</td>
<td>Career Experiences in Natural Resource Sciences</td>
</tr>
<tr>
<td>NRES 499</td>
<td>Thesis Research</td>
</tr>
<tr>
<td>NRES 499H</td>
<td>Honors Thesis</td>
</tr>
</tbody>
</table>

Animal Courses
Select two of the following:
7-8

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 475</td>
<td>Avian Biology</td>
</tr>
<tr>
<td>ENTO 402 / BIOS 485 / & ENTO 402L / BIOS 485L / NRES 402L</td>
<td>Aquatic Insects and Identification of Aquatic Insects</td>
</tr>
<tr>
<td>NRES 402</td>
<td>Waterfowl Ecology and Management</td>
</tr>
<tr>
<td>NRES 431</td>
<td>Herpetology</td>
</tr>
<tr>
<td>NRES 474</td>
<td>Mammalogy</td>
</tr>
<tr>
<td>NRES 489 / BIOS 489</td>
<td>Ichthyology</td>
</tr>
</tbody>
</table>

Plant Course
Select one of the following:
3-4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAS 440 / GRAS 440 / NRES 440 / RNGE 440</td>
<td>Great Plains Ecosystem</td>
</tr>
<tr>
<td>PLAS 442 / GRAS 442 / NRES 442 / RNGE 442</td>
<td>Wildland Plants</td>
</tr>
<tr>
<td>NRES 201 / LARC 201 / PLAS 201</td>
<td>Dendrology: Study and Identification of Trees and Shrubs</td>
</tr>
</tbody>
</table>
Nature-based Entrepreneurship Option

This option is designed for students considering careers in industry or self-employment as land or resource managers, ecotourism operators, hunting guides, or nature-based artists. Completion of this program provides a 12-hour minor in the Engler Entrepreneurship program in CASNR and prepares students to run their own nature-based business. With a careful selection of courses, students may also be able to obtain a minor in hospitality, restaurant and tourism management or grassland ecology and management.

Requirements

- **EAEP 395** Agribusiness Entrepreneurship Internship 3
- **EAEP 488 / ABUS 488 / ENTR 488 / PLAS 488** Entrepreneurship and Enterprise 3

Select one of the following:

- **NRES 233** Wildlife Field Techniques 1
- **NRES 463L** Fisheries Science Lab

Animal Course

Select one of the following:

- **BIOS 475** Avian Biology 3
- **NRES 348** Wildlife Damage Management
- **NRES 388 / AGRI 388** Employment Seminar
- **NRES 418 / GEOG 418** Introduction to Remote Sensing
- **NRES 420 / GEOG 419 / GEOL 419 / PLAS 419** Applications of Remote Sensing in Agriculture and Natural Resources
- **NRES 427 / GEOG 427** Introduction to the Global Positioning System (GPS)
- **NRES 428 / ALEC 428** Leadership in Public Organizations
- **NRES 450 / BIOS 450** Biology of Wildlife Populations
- **NRES 459 / BIOS 459 / WATS 459** Limnology
- **NRES 487 / LARC 487** Introduction to Landscape Ecology
- **NRES 492** International Study Tours in Natural Resource Management
- **PHIL 225** Environmental Ethics
- **TBMS 303** Principles and Prevention of Livestock Diseases
- **TBMS 408** Functional Histology
- **TBMS 408** Functional Histology
- **NRES 245 / PLAS 245** Introduction to Grassland Ecology and Management
- **NRES 270 / PLAS 270 / PLPT 270** Biological Invaders
- **NRES 302 / PLAS 302** Tree Biology
- **NRES 310** Introduction to Forest Management
- **NRES 321 / PLAS 321** Arboriculture: Maintenance & Selection of Landscape Trees
- **NRES 417 / PLAS 418** Agroforestry Systems in Sustainable Agriculture
- **NRES 424** Forest Ecology
- **NRES 426 / PLAS 426** Invasive Plants
- **NRES 435 / PLAS 435** Agroecology

<table>
<thead>
<tr>
<th>Animal Behavior Course</th>
<th>Select one of the following:</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCI 271</td>
<td>Companion Animal and Equine Behavior</td>
<td></td>
</tr>
<tr>
<td>BIOS 462</td>
<td>Animal Behavior</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Education Course</th>
<th>Select one of the following:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 322</td>
<td>Environmental Education Curricula</td>
<td></td>
</tr>
<tr>
<td>NRES 434 / ENVR 434</td>
<td>Environmental Education and Interpretation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anatomy and Physiology Course</th>
<th>NRES 482</th>
<th>Ecophysiology of Wildlife</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrition Course</td>
<td>ASCI 320</td>
<td>Animal Nutrition and Feeding</td>
</tr>
<tr>
<td>or ASCI 321</td>
<td>Companion Animal Nutrition</td>
<td></td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 30-35

<table>
<thead>
<tr>
<th>Total Credit Hours</th>
<th>46-51</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Free Electives</th>
<th>Select 16 hours from the following:</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECN 265 / NREE 265</td>
<td>Resource and Environmental Economics I</td>
<td></td>
</tr>
<tr>
<td>ASCI 171</td>
<td>Human-Companion Animal Interactions</td>
<td></td>
</tr>
<tr>
<td>ASCI 251</td>
<td>Introduction to Companion Animals</td>
<td></td>
</tr>
<tr>
<td>ASCI 271</td>
<td>Companion Animal and Equine Behavior</td>
<td></td>
</tr>
<tr>
<td>ASCI 341</td>
<td>Physiology and Management of Reproduction</td>
<td></td>
</tr>
<tr>
<td>ASCI 370</td>
<td>Animal Welfare</td>
<td></td>
</tr>
<tr>
<td>ASCI 421</td>
<td>Advanced Animal Nutrition</td>
<td></td>
</tr>
<tr>
<td>BIOS 312</td>
<td>Microbiology</td>
<td></td>
</tr>
<tr>
<td>BIOS 472</td>
<td>Evolution</td>
<td></td>
</tr>
<tr>
<td>BIOS 487</td>
<td>Field Parasitology</td>
<td></td>
</tr>
<tr>
<td>NRES 125</td>
<td>Introduction to Zoo and Aquarium Science</td>
<td></td>
</tr>
<tr>
<td>NRES 218</td>
<td>Introduction to Geospatial Technologies</td>
<td></td>
</tr>
<tr>
<td>NRES 270 / PLAS 270 / PLPT 270</td>
<td>Biological Invaders</td>
<td></td>
</tr>
<tr>
<td>NRES 308 / GEOG 308 / GEOL 308</td>
<td>Biogeography</td>
<td></td>
</tr>
</tbody>
</table>
Plant Course
Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAS 440</td>
<td>Great Plains Ecosystem</td>
</tr>
<tr>
<td>GRAS 440</td>
<td></td>
</tr>
<tr>
<td>NRES 440</td>
<td></td>
</tr>
<tr>
<td>RNGE 440</td>
<td></td>
</tr>
<tr>
<td>PLAS 442</td>
<td>Wildland Plants</td>
</tr>
<tr>
<td>GRAS 442</td>
<td></td>
</tr>
<tr>
<td>NRES 442</td>
<td></td>
</tr>
<tr>
<td>RNGE 442</td>
<td></td>
</tr>
<tr>
<td>NRES 201</td>
<td>Dendrology: Study and Identification of Trees and Shrubs</td>
</tr>
<tr>
<td>LARC 201</td>
<td></td>
</tr>
<tr>
<td>PLAS 201</td>
<td></td>
</tr>
<tr>
<td>NRES 245</td>
<td>Introduction to Grassland Ecology and Management</td>
</tr>
<tr>
<td>PLAS 245</td>
<td></td>
</tr>
<tr>
<td>NRES 270</td>
<td>Biological Invaders</td>
</tr>
<tr>
<td>PLAS 270</td>
<td></td>
</tr>
<tr>
<td>PLPT 270</td>
<td></td>
</tr>
<tr>
<td>NRES 302</td>
<td>Tree Biology</td>
</tr>
<tr>
<td>PLAS 302</td>
<td></td>
</tr>
<tr>
<td>NRES 310</td>
<td>Introduction to Forest Management</td>
</tr>
<tr>
<td>NRES 321</td>
<td>Arboriculture: Maintenance & Selection of Landscape Trees</td>
</tr>
<tr>
<td>PLAS 321</td>
<td></td>
</tr>
<tr>
<td>NRES 417</td>
<td>Agroforestry Systems in Sustainable Agriculture</td>
</tr>
<tr>
<td>PLAS 418</td>
<td></td>
</tr>
<tr>
<td>NRES 424</td>
<td>Forest Ecology</td>
</tr>
<tr>
<td>NRES 426</td>
<td>Invasive Plants</td>
</tr>
<tr>
<td>PLAS 426</td>
<td></td>
</tr>
<tr>
<td>NRES 435</td>
<td>Agroecology</td>
</tr>
<tr>
<td>PLAS 435</td>
<td></td>
</tr>
</tbody>
</table>

Fisheries and Wildlife Courses
Select two of the following: 6-8

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 211</td>
<td>Introduction to Conservation Biology</td>
</tr>
<tr>
<td>NRES 348</td>
<td>Wildlife Damage Management</td>
</tr>
<tr>
<td>NRES 431</td>
<td>Waterfowl Ecology and Management</td>
</tr>
<tr>
<td>NRES 433</td>
<td>Wildlife Management Techniques</td>
</tr>
<tr>
<td>& NRES 233</td>
<td>and Wildlife Field Techniques</td>
</tr>
<tr>
<td>NRES 434</td>
<td>Environmental Education and Interpretation</td>
</tr>
<tr>
<td>ENVR 434</td>
<td></td>
</tr>
<tr>
<td>NRES 441</td>
<td>Zoo Keeping and Management</td>
</tr>
<tr>
<td>NRES 450</td>
<td>Biology of Wildlife Populations</td>
</tr>
<tr>
<td>BIOS 450</td>
<td></td>
</tr>
<tr>
<td>NRES 462</td>
<td>Conservation Biology</td>
</tr>
<tr>
<td>NRES 463</td>
<td>Fisheries Science</td>
</tr>
<tr>
<td>& NRES 463L</td>
<td>and Fisheries Science Lab</td>
</tr>
<tr>
<td>NRES 482</td>
<td>Ecophysiology of Wildlife</td>
</tr>
<tr>
<td>NRES 492</td>
<td>International Study Tours in Natural Resource Management</td>
</tr>
</tbody>
</table>

Entrepreneurship Courses
Select two of the following: 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECN 256</td>
<td>Legal Aspects in Agriculture</td>
</tr>
<tr>
<td>AECN 357</td>
<td>Natural Resource and Environmental Law</td>
</tr>
<tr>
<td>NREE 357</td>
<td></td>
</tr>
<tr>
<td>PLAS 204</td>
<td>Resource-Efficient Crop Management</td>
</tr>
<tr>
<td>PLAS 440</td>
<td>Great Plains Ecosystem</td>
</tr>
<tr>
<td>GRAS 440</td>
<td></td>
</tr>
<tr>
<td>NRES 440</td>
<td></td>
</tr>
<tr>
<td>RNGE 440</td>
<td>Wildland Plants</td>
</tr>
<tr>
<td>PLAS 442</td>
<td>GRAS 442</td>
</tr>
<tr>
<td>NRES 442</td>
<td>RNGE 442</td>
</tr>
<tr>
<td>ALEC 393</td>
<td>Digital Imaging and Storytelling in Agriculture and Natural Resources</td>
</tr>
<tr>
<td>NRES 393</td>
<td></td>
</tr>
<tr>
<td>PLAS 200</td>
<td>Landscape and Environmental Appreciation</td>
</tr>
<tr>
<td>GEOG 200</td>
<td></td>
</tr>
<tr>
<td>LARC 200</td>
<td></td>
</tr>
<tr>
<td>PLAS 261</td>
<td>Floral Design I</td>
</tr>
<tr>
<td>PLAS 471</td>
<td>Vines, Wines and You</td>
</tr>
<tr>
<td>HRTM 471</td>
<td></td>
</tr>
<tr>
<td>NUTR 471</td>
<td></td>
</tr>
<tr>
<td>HRTM 171</td>
<td>Introduction to Hospitality Management</td>
</tr>
<tr>
<td>HRTM 172</td>
<td>Field Experience in Hospitality Management I</td>
</tr>
<tr>
<td>HRTM 274</td>
<td>Introduction to Food and Beverage in the Hospitality Industry</td>
</tr>
<tr>
<td>HRTM 280</td>
<td>Introduction to Tourism</td>
</tr>
<tr>
<td>HRTM 285</td>
<td>Introduction to the Lodging Industry</td>
</tr>
<tr>
<td>HRTM 289</td>
<td>Introduction to the Event Industry</td>
</tr>
<tr>
<td>HRTM 360</td>
<td>Hospitality and Tourism Marketing</td>
</tr>
<tr>
<td>HRTM 374</td>
<td>Guest Services Management</td>
</tr>
<tr>
<td>HRTM 481</td>
<td>Legal Environment in Hospitality Management</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>HRTM 483</td>
<td>Hospitality Financial Management</td>
</tr>
<tr>
<td>JGEN 184</td>
<td>Basic Photography/Videography</td>
</tr>
<tr>
<td>NREE 456 /</td>
<td>Environmental Law</td>
</tr>
<tr>
<td>AECN 456</td>
<td></td>
</tr>
<tr>
<td>NREE 457 /</td>
<td>Water Law</td>
</tr>
<tr>
<td>AECN 457 /</td>
<td></td>
</tr>
<tr>
<td>WATS 457</td>
<td></td>
</tr>
<tr>
<td>NRES 201 /</td>
<td>Dendrology: Study and Identification of Trees and Shrubs</td>
</tr>
<tr>
<td>LARC 201 /</td>
<td></td>
</tr>
<tr>
<td>PLAS 201</td>
<td></td>
</tr>
<tr>
<td>NRES 245 /</td>
<td>Introduction to Grassland Ecology and Management</td>
</tr>
<tr>
<td>PLAS 245</td>
<td></td>
</tr>
<tr>
<td>NRES 302 /</td>
<td>Tree Biology</td>
</tr>
<tr>
<td>PLAS 302</td>
<td></td>
</tr>
<tr>
<td>NRES 310</td>
<td>Introduction to Forest Management</td>
</tr>
<tr>
<td>NRES 321 /</td>
<td>Arboriculture: Maintenance & Selection of Landscape Trees</td>
</tr>
<tr>
<td>PLAS 321</td>
<td></td>
</tr>
<tr>
<td>NRES 348</td>
<td>Wildlife Damage Management</td>
</tr>
<tr>
<td>NRES 417 /</td>
<td>Agroforestry Systems in Sustainable Agriculture</td>
</tr>
<tr>
<td>PLAS 418</td>
<td></td>
</tr>
<tr>
<td>NRES 424</td>
<td>Forest Ecology</td>
</tr>
<tr>
<td>NRES 426 /</td>
<td>Invasive Plants</td>
</tr>
<tr>
<td>PLAS 426</td>
<td></td>
</tr>
<tr>
<td>NRES 435 /</td>
<td>Agroecology</td>
</tr>
<tr>
<td>PLAS 435</td>
<td></td>
</tr>
<tr>
<td>NRES 434 /</td>
<td>Environmental Education and Interpretation</td>
</tr>
<tr>
<td>ENVR 434</td>
<td></td>
</tr>
<tr>
<td>PHOT 161</td>
<td>Photography for Non-majors</td>
</tr>
<tr>
<td>RNGE 240 /</td>
<td>Forage Crop and Pasture Management</td>
</tr>
<tr>
<td>PLAS 240 /</td>
<td></td>
</tr>
<tr>
<td>GRAS 240</td>
<td></td>
</tr>
<tr>
<td>RNGE 340 /</td>
<td>Range Management and Improvement</td>
</tr>
<tr>
<td>PLAS 340 /</td>
<td></td>
</tr>
<tr>
<td>GRAS 340</td>
<td></td>
</tr>
<tr>
<td>TMFD 121</td>
<td>Visual Communication with Animation</td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 34-38

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 428 /</td>
<td>Leadership in Public Organizations</td>
</tr>
<tr>
<td>ALEC 428</td>
<td></td>
</tr>
<tr>
<td>NRES 450 /</td>
<td>Biology of Wildlife Populations</td>
</tr>
<tr>
<td>BIOS 450</td>
<td></td>
</tr>
<tr>
<td>NRES 459 /</td>
<td>Limnology</td>
</tr>
<tr>
<td>BIOS 459 /</td>
<td></td>
</tr>
<tr>
<td>WATS 459</td>
<td></td>
</tr>
<tr>
<td>NRES 487 /</td>
<td>Introduction to Landscape Ecology</td>
</tr>
<tr>
<td>LARC 487</td>
<td></td>
</tr>
<tr>
<td>NRES 492</td>
<td>International Study Tours in Natural Resource Management</td>
</tr>
<tr>
<td>And/or any optional courses listed but not taken under the Core courses, Fisheries and Wildlife courses, or Option Requirements headings in this program.</td>
<td></td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 8

Total Credit Hours: 42-46

1. Work with your advisor to select 9 hours that will enhance professional competencies and complement career goals in land or resource management, ecotourism/guiding, or nature-based art.

Additional Major Requirements

Prerequisite Requirements/Rules

Students are required to complete the Basic Core before their junior year.

Basic Core

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIL 101</td>
<td>Science and Decision-Making for a Complex World</td>
<td>3</td>
</tr>
<tr>
<td>NRES 101</td>
<td>Natural Resources Orientation</td>
<td>1</td>
</tr>
<tr>
<td>LIFE 120</td>
<td>Fundamentals of Biology I</td>
<td>4</td>
</tr>
<tr>
<td>LIFE 120L</td>
<td>Fundamentals of Biology I Laboratory</td>
<td></td>
</tr>
<tr>
<td>LIFE 121</td>
<td>Fundamentals of Biology II</td>
<td>4</td>
</tr>
<tr>
<td>LIFE 121L</td>
<td>Fundamentals of Biology II Laboratory</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>NRES 220</td>
<td>Principles of Ecology</td>
<td></td>
</tr>
<tr>
<td>& NRES 222</td>
<td>Ecology and Ecology Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIOS 207</td>
<td>Ecology and Evolution</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 105A</td>
<td>Chemistry in Context I</td>
<td></td>
</tr>
<tr>
<td>& CHEM 105L</td>
<td>and Chemistry in Context I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 109A</td>
<td>General Chemistry I</td>
<td>4-5</td>
</tr>
<tr>
<td>& CHEM 109L</td>
<td>and General Chemistry I Laboratory</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4-5</td>
</tr>
<tr>
<td>PHYS 141</td>
<td>Elementary General Physics I</td>
<td></td>
</tr>
<tr>
<td>PHYS 151</td>
<td>Elements of Physics</td>
<td></td>
</tr>
<tr>
<td>AGST 109</td>
<td>Physical Principles in Agriculture and Life Sciences</td>
<td></td>
</tr>
<tr>
<td>PHYS 211</td>
<td>General Physics I</td>
<td></td>
</tr>
<tr>
<td>MATH 104</td>
<td>Applied Calculus</td>
<td>3-5</td>
</tr>
<tr>
<td>or MATH 106</td>
<td>Calculus I</td>
<td></td>
</tr>
<tr>
<td>STAT 218</td>
<td>Introduction to Statistics</td>
<td>3</td>
</tr>
<tr>
<td>or STAT 380</td>
<td>Statistics and Applications</td>
<td></td>
</tr>
</tbody>
</table>

Written Communication Requirement

Select any ACE 1 course 3

Total Credit Hours 33-36

Fisheries and wildlife majors must complete the Basic Core to be able to register for the following 300- and 400-level NRES courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 386 / BIOS 386</td>
<td>Vertebrate Zoology</td>
<td>4</td>
</tr>
<tr>
<td>NRES 433</td>
<td>Wildlife Management Techniques</td>
<td>3</td>
</tr>
<tr>
<td>NRES 450 / BIOS 450</td>
<td>Biology of Wildlife Populations</td>
<td>4</td>
</tr>
<tr>
<td>NRES 463</td>
<td>Fisheries Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Grade Rules
Pass/No Pass

Fisheries and wildlife majors must take all NRES courses as graded, with the exception of NRES 497.

GPA Requirements
Students must maintain a 2.5 cumulative GPA to graduate in the fisheries and wildlife major.

Requirements for Minor Offered by Department
A minor in fisheries and wildlife consists of eighteen (18) hours of coursework. An advisor for the minor will be assigned by the fisheries and wildlife major coordinator.

Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 220</td>
<td>Principles of Ecology</td>
<td>3-4</td>
</tr>
<tr>
<td>or BIOS 207</td>
<td>Ecology and Evolution</td>
<td></td>
</tr>
<tr>
<td>NRES 311</td>
<td>Wildlife Ecology and Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 433</td>
<td>Wildlife Management Techniques</td>
<td></td>
</tr>
<tr>
<td>& NRES 233</td>
<td>and Wildlife Field Techniques</td>
<td></td>
</tr>
<tr>
<td>NRES 438</td>
<td>Grassland Conservation: Planning and Management</td>
<td></td>
</tr>
<tr>
<td>NRES 441</td>
<td>Zoo Keeping and Management</td>
<td></td>
</tr>
<tr>
<td>NRES 463</td>
<td>Fisheries Science</td>
<td></td>
</tr>
<tr>
<td>& NRES 463L</td>
<td>and Fisheries Science Lab</td>
<td></td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 10

Elective Courses
Select 7-9 hours of the following to reach a total of 18 hours for the minor:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECN 357</td>
<td>Natural Resource and Environmental Law</td>
<td></td>
</tr>
<tr>
<td>NRES 211</td>
<td>Introduction to Conservation Biology</td>
<td></td>
</tr>
<tr>
<td>NRES 218</td>
<td>Introduction to Geospatial Technologies</td>
<td></td>
</tr>
<tr>
<td>NRES 222</td>
<td>Ecology Laboratory</td>
<td></td>
</tr>
<tr>
<td>NRES 233</td>
<td>Wildlife Field Techniques</td>
<td></td>
</tr>
<tr>
<td>NRES 245 / PLAS 245</td>
<td>Introduction to Grassland Ecology and Management</td>
<td></td>
</tr>
<tr>
<td>NRES 270 / PLAS 270 / PLPT 270</td>
<td>Biological Invaders</td>
<td></td>
</tr>
<tr>
<td>NRES 299</td>
<td>Special Topics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRES 310</td>
<td>Introduction to Forest Management</td>
<td></td>
</tr>
<tr>
<td>NRES 315</td>
<td>Human Dimensions of Fish and Wildlife Management</td>
<td></td>
</tr>
<tr>
<td>NRES 323</td>
<td>Natural Resources Policy</td>
<td></td>
</tr>
<tr>
<td>NRES 348</td>
<td>Wildlife Resources Policy</td>
<td></td>
</tr>
<tr>
<td>NRES 386</td>
<td>Vertebrate Zoology</td>
<td></td>
</tr>
<tr>
<td>NRES 399</td>
<td>Independent Research</td>
<td></td>
</tr>
<tr>
<td>NRES 417 / PLAS 418</td>
<td>Agroforestry Systems in Sustainable Agriculture</td>
<td></td>
</tr>
<tr>
<td>NRES 424</td>
<td>Forest Ecology</td>
<td></td>
</tr>
<tr>
<td>NRES 431</td>
<td>Waterfowl Ecology and Management</td>
<td></td>
</tr>
<tr>
<td>NRES 433</td>
<td>Wildlife Management Techniques</td>
<td></td>
</tr>
<tr>
<td>NRES 438</td>
<td>Grassland Conservation: Planning and Management</td>
<td></td>
</tr>
<tr>
<td>NRES 450 / BIOS 450</td>
<td>Biology of Wildlife Populations</td>
<td></td>
</tr>
<tr>
<td>NRES 459 / BIOS 459 / WATS 459</td>
<td>Limnology</td>
<td></td>
</tr>
<tr>
<td>NRES 463</td>
<td>Fisheries Science</td>
<td></td>
</tr>
<tr>
<td>NRES 463L</td>
<td>Fisheries Science Lab</td>
<td></td>
</tr>
<tr>
<td>NRES 468 / BIOS 458 / BSEN 468 / WATS 468</td>
<td>Wetlands</td>
<td></td>
</tr>
<tr>
<td>NRES 474 / BIOS 474</td>
<td>Herpetology</td>
<td></td>
</tr>
<tr>
<td>BIOS 475</td>
<td>Avian Biology</td>
<td></td>
</tr>
<tr>
<td>NRES 476 / BIOS 476</td>
<td>Mammalogy</td>
<td></td>
</tr>
<tr>
<td>NRES 482</td>
<td>Ecophysiology of Wildlife</td>
<td></td>
</tr>
<tr>
<td>NRES 489 / BIOS 489</td>
<td>Ichthyology</td>
<td></td>
</tr>
<tr>
<td>NRES 492</td>
<td>International Study Tours in Natural Resource Management</td>
<td></td>
</tr>
<tr>
<td>NRES 496</td>
<td>Independent Study</td>
<td></td>
</tr>
<tr>
<td>NRES 497</td>
<td>Career Experiences in Natural Resource Sciences</td>
<td></td>
</tr>
<tr>
<td>NRES 498</td>
<td>Special Topics in Natural Resources</td>
<td></td>
</tr>
<tr>
<td>NRES 499</td>
<td>Thesis Research</td>
<td></td>
</tr>
<tr>
<td>NRES 499H</td>
<td>Honors Thesis</td>
<td></td>
</tr>
</tbody>
</table>

Credit Hours Subtotal: 8

Total Credit Hours 18

NRES 101 Natural Resources Orientation

Description: Introduction to natural resource disciplines. Fisheries, wildlife, forestry, grasslands, climate, and water science. Participate in field exercises in terrestrial and aquatic ecosystems.

Credit Hours: 1

Max credits per semester: 1

Max credits per degree: 1

Grading Option: Graded

Offered: FALL

Course and Laboratory Fee: $50
NRES 103 Introduction to Agricultural and Natural Resource Systems
Crosslisted with: AGRI 103
Description: Agricultural and natural resource systems. The interrelationship and the impact of increased human involvement on these systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL/SPR

NRES 104 Climate in Crisis
Description: Past, present and future climate change. Climate science basics in the context of global changes (such as global warming, droughts, deforestation) that impact Earth and its inhabitants. Future climate change scenarios and possible impacts.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 9 Global/Diversity

NRES 107 Invasive Plant Species: Impacts on Ecosystems
Crosslisted with: PLAS 107
Notes: Online only
Description: The flora of the earth is constantly being re-distributed by natural and human forces. As plant species change locations, they affect ecosystems, but how? In this course, students will learn how invasive plants establish and spread in ecosystems and develop an understanding of their impacts on ecosystems from local to global scales.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Offered: FALL/SPR
ACE: ACE 9 Global/Diversity

NRES 108 Earth's Natural Resource Systems Laboratory
Description: Introduction to Earth's natural resource systems. Interactions between the geosphere (solid earth) and the hydrosphere. The atmosphere and biosphere over many different spatial and temporal scales, and role of humans as part of the system.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
ACE: ACE 4 Science
Course and Laboratory Fee: $15

NRES 109 Water in Society
Crosslisted with: SCIL 109, AECN 109, ENVR 109, GEOG 109
Description: Introduction to the scientific, social, and economic dimensions of historical and contemporary water systems. Students will develop an understanding of hydrologic systems and analyze and engage in decision-making about complex challenges associated with water resource use.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL
Prerequisite for: SCIL 300
ACE: ACE 8 Civic/Ethics/Stewardship ACE 4 Science

NRES 111 Wildlife and Natural Resource Conservation
Description: Explore and distinguish the basic concepts, values, and stewardship of wildlife and natural resource conservation in agricultural and natural ecosystems. Examine the philosophies of ecosystem services and stewardship within a dynamic human-dominated world. Students will explore and analyze current issues related to conservation of wildlife and other natural resources.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING
Prerequisite for: SCIL 300

NRES 115 Introduction to Environmental Science
Notes: High school earth sciences, chemistry and mathematics courses recommended.
Description: Emphasizes understanding the natural world and improving science literacy by learning the scientific method. Contemporary environmental problems are presented along with relevant questions. The scientific method along with fundamental concepts of chemistry, physics and biology are used to present possible solutions to environmental issues.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded
Offered: FALL
ACE: ACE 4 Science
Course and Laboratory Fee: $70

NRES 125 Introduction to Zoo and Aquarium Science
Description: Become familiar with the concepts and challenges associated with biological, ethical, welfare, and administrative aspects of zoo science and captive animal care. Conduct an ethology study using the scientific method.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
ACE: ACE 4 Science

NRES 130 People of Great Plains
Description: The Great Plains region offers considerable ecological and cultural diversity, encompassing more than 600 million acres which have been occupied by humans for over 12,000 years. Introduction to the different populations who have called the Great Plains home, and how they have made a living on this landscape. Investigate Native American life ways in the Great Plains from the time of initial colonization up to European contact and the dramatic changes experienced during the historic era. Select topics centered on contemporary socio-ecological systems on the Plains and how understanding of past Plains experiences can be used to inform on these contemporary issues.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 5 Humanities
Experiential Learning: Case/Project-Based Learning
NRES 163 Oh My Cod: Exploring Aquatic Ecology Careers
Prerequisites: Limited to Freshman or Sophomore classification only
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option

NRES 170 Introduction to Great Plains Studies
Crosslisted with: ANTH 170, GEOG 170, GPSP 170, SOCI 170
Description: Interdisciplinary study of the natural environment, social environment, human heritage, arts and humanities of the Great Plains.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 201 Dendrology: Study and Identification of Trees and Shrubs
Crosslisted with: PLAS 201, LARC 201
Description: An introduction to the naming, identification, and natural history of woody trees and shrubs in North American with emphasis on trees common to Nebraska. Covers morphology, natural site conditions, wildlife and human uses of woody trees and shrubs.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL

NRES 208 Climate Literacy in Natural Resources
Description: Develop an understanding of the science of the climate system and the climate's influence on our environment. Learn about climate interactions, impacts of changing climate conditions, and actions to reduce these impacts, particularly on natural resources. Develop competency in assessing scientific information about the global climate and learn that such information is essential in making informed decisions about natural resource management.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL

NRES 210 Applied Ornithology
Description: To explore interactions between birds and people from economic and scientific perspectives, understand societal conflicts between feral cats and birds, hazards birds present to aircraft, the economics of bird feeding, how commercial bird hunting clubs work, how populations are affected by collisions with vehicles, windows and towers, the taxidermy industry and museum science, and hunting organizations such as Pheasants Forever and Ducks Unlimited.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded
Offered: SPRING
Course and Laboratory Fee: $65

NRES 211 Introduction to Conservation Biology
Prerequisites: Sophomore standing.
Description: Introduction to problems faced in fulfilling the ever increasing human needs while maintaining ecosystem and biodiversity. The integration of biological fields such as wildlife biology, ecology, evolution, and genetics with non-biological fields such as economics, philosophy, and politics to the dilemma this presents.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 212 Woody Plants for Landscapes: Identification, Management, and Use
Crosslisted with: PLAS 212, LARC 212
Description: Identification, basic management and design uses of trees and shrubs for sustainable landscapes, with an emphasis on native plants and plants adapted to the Plains states. Emphasis is on live specimens in outdoor environments, supported by online resources.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL

NRES 213 Cultivars and Varieties of Woody Plants for Landscapes
Crosslisted with: PLAS 213, LARC 213
Description: Characteristics of commercially available trees and shrubs used in urban landscapes. Compares differences among cultivars, design uses, and management issues using a combination of live specimens in outdoor environments and online resources.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING

NRES 214 Herbaceous Landscape Plants
Crosslisted with: PLAS 214
Description: Identification of herbaceous plants with ornamental value in the landscape including native and introduced annuals, perennials, grasses and cultivars. Typical ecological associations, environmental tolerances and/or intolerance, cultural requirements, and design characteristics.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 218 Introduction to Geospatial Technologies
Notes: Recommended to have basic computer skills
Description: Theory and applications of geospatial information technology (GIT) with emphasis on real-world applications to natural resources. Overview of GIT, focusing on introduction of remote sensing, the global positioning system (GPS), and geographic information systems (GIS). Introduction to data collection, spatial data representation, georeferencing, spatial data analysis, and remote sensing image analysis.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL/SPR
Course and Laboratory Fee: $50
NRES 220 Principles of Ecology
Prerequisites: LIFE 121 or BIOS 101 or PLAS 131; 3 hours MATH.
Notes: Not open to students who have completed BIOS 207. Will not count toward a major in BIOS. MATH 100A is not sufficient preparation.
Description: Ecology as a quantitative discipline that integrates the life and earth sciences to understand the dynamics of natural and managed ecosystems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: BIOS 459, BIOS 859, NRES 459, NRES 859, WATS 459; LARC 487, NRES 487, NRES 222; NRES 311; NRES 374; NRES 862, NRES 462

NRES 222 Ecology Laboratory
Prerequisites: NRES 220 or parallel.
Notes: May also be offered at Cedar Point Biological Station. Field trips to local ecosystems are required.
Description: Field and laboratory experiments in terrestrial and aquatic ecology.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option
Prerequisite for: NRES 862, NRES 462; WATS 481, WATS 881, BIOS 481, NRES 481

NRES 233 Wildlife Field Techniques
Prerequisites: Sophomore status.
Notes: Offered off-campus during academic breaks at Cedar Point Biological Station. Course fee applies.
Description: Field and laboratory skills needed for wildlife management emphasizing wildlife and vegetation surveys, mark-recapture of wildlife, radio-telemetry, aging and forensic methods, and habitat assessment.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded
Course and Laboratory Fee: $220

NRES 235 Independent Fisheries and Wildlife Field Techniques
Prerequisites: Permission
Notes: Credit hours calculated (similar to NRES 233 and NRES 463L) as a laboratory with 2-3 contact hours per credit hours because of field work and independent study.
Description: Introduction to field and laboratory skills used for fisheries and wildlife management emphasizing animal and habitat surveys, capture methods, radio-telemetry, sexing and aging methods, and habitat assessment using independent experiential learning.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded
Offered: FALL

NRES 245 Introduction to Grassland Ecology and Management
Crosslisted with: PLAS 245
Prerequisites: PLAS 153
Description: Grassland ecology and management is relevant to students with education and career goals in managing natural resources in Nebraska and the Great Plains. About 50% of the land area in Nebraska is classified as grassland (or rangeland) and is the land type with the most opportunity for enhancing biodiversity and wildlife habitat. Applying ecological principles and social values to managing rangeland resources, students will develop a knowledge and appreciation for the various grassland management uses and techniques available to resource managers.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: PLAS 340, RNGE 340, GRAS 340

NRES 249 Individual and Cultural Perspectives on the Environment
Crosslisted with: ENVR 249
Description: The influence of culture on individual perspectives related to the concepts of sustainability and the relationship that humans have with the environment. The role of ethics, religion, and historical setting on the individual and cultural perspectives related to environmental challenges at the local to global scales.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 9 Global/Diversity

NRES 260 Introduction to Conservation Photography
Description: An introduction to photography in natural resources and conservation. Provides a solid photography foundation for applications in research projects, science communication efforts, and the field of conservation.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Offered: FALL/SPR

NRES 270 Biological Invaders
Crosslisted with: PLAS 270, PLPT 270
Prerequisites: 3 hrs biological sciences.
Description: Impact of exotic species and invasive organisms: agricultural and medical emerging disease; predicting biological invasions; biological control; regulatory, monitoring, and control efforts; ecological impact.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
NRES 297 Soil Evaluation
Crosslisted with: PLAS 279, SOIL 279
Notes: PLAS/SOIL 153 recommended, but not required. This course includes an inter-collegiate Soil Judging contest that takes place in the North Central region of the United States during the course of the class, or a course-based undergraduate research experience.
Description: Apply fundamental knowledge to the description of soils in the field. Application of techniques employed in writing descriptions of soil morphology and in classifying and interpreting soils.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Grading Option: Graded with Option
Prerequisite for: NRES 379, PLAS 379, SOIL 379
Course and Laboratory Fee: $40
Experiential Learning: Fieldwork

NRES 281 Introduction to Water Science
Crosslisted with: GEOG 281, WATS 281
Prerequisites: High school chemistry or one semester college chemistry; one course in geology or physical geography or soil.
Description: Survey of the water science from the perspective of both natural and social sciences. Water budget, precipitation, evapotranspiration, runoff and stream flow, groundwater, water quality parameters, economics of water, water policy, water law and water politics.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: NRES 319; PLAS 361, GEOL 361, NRES 361, SOIL 361, WATS 361

NRES 289 People and the Land: Human Environmental Interactions on the Great Plains
Crosslisted with: GEOG 289
Description: Explore human environmental interaction on the Great Plains. Samples a variety of Great Plains cultures and time periods to explore past use of the Great Plains environment. Evaluation of attributes and related data critical to the operation of past social-ecological systems with reference to changing climatic/ecological dynamics, human environmental impacts, and the sustainability of various indigenous and western modes of land use on the Great Plains. Investigate knowledge of these processes and how they can be of relevance to contemporary issues of Great Plains land management and resource utilization.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: GEOG 308, GEOL 308

NRES 300 Toxins in the Environment
Crosslisted with: BIOS 300, ENTO 300
Prerequisites: One semester BIOS and one semester CHEM
Description: Introduction to the principles of toxicology as they apply to environmental contaminants, agri-chemicals, and industrial and naturally occurring chemicals.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 301 Environmental Communication Skills
Prerequisites: ACE 1 course. Sophomore or higher.
Description: Written and oral communication skills for natural resource management including writing for the media, grant writing, conflict resolution and advocacy.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Offered: FALL
ACE: ACE 2 Communication Competence

NRES 302 Tree Biology
Crosslisted with: PLAS 302
Prerequisites: BIOS 101 or LIFE 120 or PLAS 131
Description: The study of the structure and function of woody plants, with a focus on trees growing in temperate climates. Covers the basics of wood physiology in terms of the biological, physical, and chemical processes utilized by tree to function. The anatomy and morphology of trees with a focus on the impacts of tree maintenance to the structure and function of landscape trees.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 308 Biogeography
Crosslisted with: GEOG 308, GEOL 308
Prerequisites: GEOG 155 or BIOS 101 and 101L or GEOL 101.
Notes: Biogeography is a highly interdisciplinary science, relying heavily on ecology, geological science, and climatology. It is global in scope and offers the latest knowledge in understanding organism distributions, and the factors that determine those distributions.
Description: Introduction to the basic concepts of biogeography, the study of distributions of plants and animals, both past and present.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 299 Special Topics
Prerequisites: Permission.
Description: Special topics in natural resources.
Credit Hours: 1-4
Min credits per semester: 1
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
NRES 310 Introduction to Forest Management
Prerequisites: BIOS 101, PLAS 131 or LIFE 120
Description: Discussion of the history, biology, and management of the world's forest resources with emphasis on the Great Plains region. Topics include: forest types and their relationship to site conditions, ecological principles of forest management, basic forest management practices, economic and policy decisions in forest management. The field-oriented lab emphasizes tree identification, forest ecology, forest management and wood products.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Offered: FALL
Course and Laboratory Fee: $30

NRES 311 Wildlife Ecology and Management
Prerequisites: NRES 220 or BIOS 207, or concurrent.
Description: Applied ecology, conservation biology, population biology, and enhancement of vertebrate, non-domestic animal populations through management. Emphasis on policy, decision-making, and management options involving people, habitat, and wildlife.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING
Prerequisite for: ASCI 321

NRES 315 Human Dimensions of Fish and Wildlife Management
Description: Introduction to the basic concepts and ideas relevant in the human dimension of fisheries and wildlife management. Covers social, cultural and economic values, attitudes and behavior of individuals and groups of various stakeholders in fisheries and wildlife management.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 319 Fundamentals of Environmental Sampling
Prerequisites: SOIL 153, WATS 281, CHEM 105A and 105L or CHEM 109A and 109L.
Notes: Recommend taking STAT 218.
Description: Development of sampling plans and quality assurance project plans (QAPP). Stepwise procedures for correct sampling of soil-air-water environments. Data quality assessment.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Grading Option: Graded with Option
Prerequisite for: NRES 320

NRES 320 Fundamentals of Environmental Sampling Laboratory
Prerequisites: NRES 319 or concurrent enrollment
Notes: Outdoor and analytical laboratory field trips required.
Description: Demonstrations and hands on participation in sampling of soil-air-water environments.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option
Course and Laboratory Fee: $90

NRES 321 Arboriculture: Maintenance & Selection of Landscape Trees
Crosslisted with: PLAS 321
Prerequisites: Junior standing
Description: Covers practical application of the science of tree growth, development, and management in human dominated landscapes. Tree selection for varying landscapes and objectives, proper planting and pruning, identification and correction of tree defects, and working with tree pest issues.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Offered: SPRING
Groups: Laboratory and Field Training

NRES 322 Environmental Education Curricula
Description: National curricula are available to formal and non-formal educational and STEM (science, technology, engineering, and math) educators. Become certified in a series of national environmental education curricula such as Project WILD, Project WET, Project Aquatic WILD and Project Learning Tree. Apply skills and curricula by teaching others through experiential service learning.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Offered: FALL/SPR
Course and Laboratory Fee: $55
Experiential Learning: Community Engagement

NRES 323 Natural Resources Policy
Prerequisites: Junior standing.
Description: Conflicts and common ground perpetuated by increasing demands on our natural resources. Policy development and issue analysis stressed. Historical policy actions reviewed and evaluated.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 330 Environmental Health
Crosslisted with: NUTR 330
Prerequisites: Class standing of sophomore or above with at least one semester of chemistry and biology.
Description: Provides a comprehensive understanding of how environmental exposures to physical, chemical and biological hazards influence human health. Offers basic knowledge in the core concepts of toxicology, exposure and risk, vulnerable populations and the interrelationship between human, animal and environmental health.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL/SPR
ACE: ACE 8 Civic/Ethics/Stewardship
NRES 348 Wildlife Damage Management
Description: Fundamentals of prevention and control of damage caused by vertebrate pests, principally birds and mammals. Philosophical, ecological, and behavioral basis for controlling population levels or individuals of pest species.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Course and Laboratory Fee: $20
Prerequisite for: NRES 348 Wildlife Damage Management

NRES 350 Applied Climatology
Crosslisted with: METR 370
Prerequisites: Junior or Senior Standing
Description: Processes that give rise to spatial and temporal differences in climate. Various interrelationships between humans and climate. Influence of climate on building styles, the economy, water resources, human health, and society. Humans’ inadvertent and purposeful modification of the atmosphere.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL
Course and Laboratory Fee: $20

NRES 374 Field Herpetology
Prerequisites: BIOS 207 OR NRES 220
Description: Become proficient in valuable skills regarding methods, techniques and standards for obtaining field data regarding Herpetofauna for various applications. Gain knowledge of the principles for conservation and management of Herpetofauna such as occupancy, population demographics, regional status, threat analysis, infectious disease occurrences and more. Ability to utilize critical thinking to propose solutions in regard to herpetological conservation and management situations/scenarios. Recognize and identify Nebraska Herpetofauna.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded
Offered: SUMMER
Experiential Learning: Fieldwork

NRES 379 Advanced Soil Evaluation
Crosslisted with: PLAS 379, SOIL 379
Prerequisites: PLAS/NRES/SOIL 279
Notes: This course includes a national- or regional-level inter-collegiate Soil Judging contest that takes place during the course of the class.
Description: Apply fundamental knowledge and improve field techniques to the description and interpretation of soils in the field. Application of techniques employed in writing descriptions of soil morphology and in classifying and interpreting soils.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL/SPR
Experiential Learning: Fieldwork

NRES 380 Geography of Africa
Crosslisted with: GEOG 380, ETHN 380
Description: Overview of the major physical and human landscapes in Africa. Prominent past and current events will be placed into a spatial context in an attempt to develop insight into the interrelationships that exist among people, cultures, countries, economies, and the environment, not only within Africa, but between Africa and the rest of the world.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 9 Global/Diversity
NRES 386 Vertebrate Zoology
Crosslisted with: BIOS 386
Prerequisites: LIFE 121 & LIFE 121L
Description: Evolutionary origin and relationships, natural history, and ecological adaptations of vertebrates. Comparative form and function, particularly of bone and muscle systems among and the diversity within vertebrate groups.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded
Offered: SPRING
Course and Laboratory Fee: $35

NRES 388 Employment Seminar
Crosslisted with: AGRI 388
Prerequisites: Sophomore standing.
Description: Efficient job-hunting. Resumes, cover letters, mock interviews, and dining etiquette.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Pass No Pass
Prerequisite for: AGRI 395
Course and Laboratory Fee: $25
NRES 393 Digital Imaging and Storytelling in Agriculture and Natural Resources
Crosslisted with: ALEC 393
Prerequisites: Consent of instructor(s). One college level course in photography or equivalent, and knowledge of the basics of shooting still photographs or video using digital cameras. Open only to College of Agricultural Sciences and Natural Resources students.
Notes: Can be repeated for a maximum of 9 credit hours by consent of instructor.
Description: Concepts and techniques related to use of remote and automated digital camera technology to capture images in agriculture and natural resources contexts to communicate a narrative/story. Completion of individual project using a variety of technologies including camera traps, time-lapse camera systems, remote triggered cameras, as well as traditional audio and video and conventional photography.
Credit Hours: 1-9
Min credits per semester: 1
Max credits per semester: 9
Max credits per degree: 9
Grading Option: Graded
Course and Laboratory Fee: $50
Experiential Learning: Case/Project-Based Learning

NRES 398R Research Experiences in Grasslands
Crosslisted with: GRAS 398R, PLAS 398R
Description: Scientific and research training and necessary soft skills for researchers, using grasslands as a study system. Provides individualized opportunities for engagement with scientific methods, which include experiential learning, acquisition and refinement of skills that enhance higher-learning opportunities, and increased marketability for future employment or postgraduate degrees.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 5
Grading Option: Graded
Offered: FALL
Experiential Learning: Case Work, Project-Based Learning, Research

NRES 399R Independent Research
Prerequisites: 8 hrs NRES or closely related areas.
Notes: To be supervised and evaluated by a NRES faculty member.
Description: Research, literature review, or extension of course work.
Credit Hours: 1-5
Min credits per semester: 1
Max credits per semester: 5
Max credits per degree: 6
Grading Option: Graded with Option

NRES 402 Aquatic Insects
Crosslisted with: BIOS 485, BIOS 885, ENTO 402, ENTO 802, NRES 802
Prerequisites: 12 hrs biological sciences.
Description: Biology and ecology of aquatic insects.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Grading Option: Graded with Option
Prerequisite for: BIOS 485L, BIOS 885L, ENTO 402L, ENTO 802L, NRES 402L, NRES 802L

NRES 402L Identification of Aquatic Insects
Crosslisted with: BIOS 485L, BIOS 885L, ENTO 402L, ENTO 802L, NRES 802L
Prerequisites: Parallel ENTO 802, NRES 402/802, BIOS 485/885.
Description: Identification of aquatic insects to the family level.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option
Course and Laboratory Fee: $25

NRES 404 Forestry, Fisheries and Wildlife Seminar
Prerequisites: Junior standing or above in natural resources.
Description: Seminar involving technical aspects of forestry, fisheries, and wildlife management.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 2
Grading Option: Graded with Option

NRES 406 Plant Ecophysiology: Theory and Practice
Crosslisted with: AGRO 806, HORT 806, NRES 806, PLAS 406
Prerequisites: Junior standing, 4 hrs ecology, and 4 hrs botany or plant physiology.
Description: Principles of plant physiology which underlie the relationship between plants and their physical, chemical and biotic environments. An introduction to the ecological niche, limiting factors and adaptation. An overview of the seed germination and ecology, plant and soil water relations, nutrients, plant energy budgets, photosynthesis, carbon balance and plant-animal interactions. An introduction to various field equipment used in ecophysiological studies.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option

NRES 408 Microclimate: The Biological Environment
Crosslisted with: PLAS 408, GEOG 408, METR 408, WATS 408, AGRO 808, GEOG 808, HORT 808, METR 808, NRES 808
Prerequisites: Junior standing, MATH 106 or equivalent, 5 hrs physics, major in any of the physical or biological sciences or engineering.
Description: Physical factors that create the biological environment. Radiation and energy balances of earth’s surfaces, terrestrial and marine. Temperature, humidity, and wind regimes near the surface. Control of the physical environment through irrigation, windbreaks, frost protection, manipulation of light, and radiation. Applications to air pollution research. Instruments for measuring environmental conditions and remote sensing of the environment.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: BSEN 954, NRES 954
NRES 409 Human Dimensions of Natural Resources
Prerequisites: Junior standing; 12 credit hours in natural resources, environmental studies, or closely related fields
Description: Overview of the human dimensions of natural resources issues. Exploration of the socioeconomic, cultural, and political aspects of human behavior and how these interact with, might influence, or are influenced by the environment.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
NRES 413 Environmental Leadership
Crosslisted with: ALEC 410, ALEC 810, NRES 813
Prerequisites: Junior standing.
Notes: Offered on the World Wide Web (WWW) fall semester of odd-numbered years and in the classroom fall semester of even numbered-years.
Description: Major leaders in conservation and ecology that emphasizes agricultural and cultural issues and relationships with the environment.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
NRES 415 GIS for Agriculture and Natural Resources
Crosslisted with: NRES 815
Description: Principles of digitizing earth observations. Manipulate spatial data, create maps, and conduct spatial analyses. Use GIS to analyze and solve real-world questions in agriculture and natural resources.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded
Offered: FALL
Course and Laboratory Fee: $50
NRES 417 Agroforestry Systems in Sustainable Agriculture
Crosslisted with: PLAS 418, HOR T 818, NRES 817
Prerequisites: 12 hours biological or agricultural sciences.
Description: The roles of woody plants in sustainable agricultural systems of temperate regions. Emphasis on the ecological and economic benefits of trees and shrubs in the agricultural landscape. Topics include: habitat diversity and biological control; shelterbelts structure, function, benefits and design; intercropping systems; silvopastoral systems; riparian systems; and production of timber and specialty crops. Comparison of temperate agroforestry systems to those of tropical areas.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
NRES 418 Introduction to Remote Sensing
Crosslisted with: GEOG 418, GEOG 818, NRES 818
Prerequisites: Junior Standing
Description: Remote sensing of the earth from aerial and satellite platforms. Aerial photography, multispectral scanning, thermal imaging, microwave remote sensing techniques. Data acquisition and image analysis. Physical foundations of remote sensing using electromagnetic energy and energy-matter interactions. Applications in geographic, agricultural, environmental and natural resources analyses.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Offered: FALL
Prerequisite for: GEOG 421, GEOG 821, NRES 421, NRES 821
Course and Laboratory Fee: $115
NRES 419 Chemistry of Natural Waters
Crosslisted with: GEOL 418, GEOL 818, NRES 819, WATS 418
Prerequisites: CHEM 109A/L and CHEM 110A/L, CHEM 113A/L and CHEM 114.
Description: Principles of water chemistry and their use in precipitation, surface water, and groundwater studies. Groundwater applications used to determine the time and source of groundwater recharge, estimate groundwater residence time, identify aquifer mineralogy, examine the degree of mixing between waters of various sources and evaluate what types of biological and chemical processes have occurred during the water’s journey through the aquifer system.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Course and Laboratory Fee: $25
NRES 420 Applications of Remote Sensing in Agriculture and Natural Resources
Crosslisted with: PLAS 419, GEOG 419, GEOL 419, AGRO 819, GEOG 819, GEOL 819, NRES 820
Notes: GEOG 418/NRES 418 recommended
Description: Introduction to the practical uses of remote electromagnetic sensing in dealing with agricultural and water-resources issues.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Course and Laboratory Fee: $35
NRES 421 Field Techniques in Remote Sensing
Crosslisted with: GEOG 421, GEOG 821, NRES 821
Prerequisites: NRES 418/818
Description: Field techniques as they relate to remote-sensing campaigns. Research methods, systematic approaches to data collection, field spectroscopy, collecting ancillary information linked with spectroscopic data sets as well as aircraft or satellite missions and subsequent analyses of acquired data.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Course and Laboratory Fee: $65
NRES 422 Laboratory Earth: Earth's Changing Systems
Crosslisted with: NRES 822
Description: Fundamental concepts related to understanding Earth’s changing natural systems in the past, present, and the future. The cycling of matter and energy; the relationship between human activity and environmental change; and the consequence of these relationships.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 424 Forest Ecology
Crosslisted with: NRES 824
Prerequisites: NRES 220 or BIOS 207
Description: The structure and function of forest ecosystems including their response to global change; emphasis on forest succession and disturbance regimes in order to understand the dynamics of forested landscapes.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING

NRES 425 Wildlife Health
Crosslisted with: VBMS 425
Prerequisites: LIFE 120 and LIFE 121; Junior standing and above
Description: Introduction to ecological, social, and institutional issues. Engage in discussions of important zoonotic diseases, diseases of conservation concern, non-infectious threats, and strategies for assessing and managing wildlife health.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Offered: SPRING

NRES 426 Invasive Plants
Crosslisted with: PLAS 426, AGRO 826, HORT 826, NRES 826
Prerequisites: PLAS/SOIL 153; PLAS 131
Description: Identification, biology and ecology of weedy and invasive plants. Principles of invasive plant management by preventative, cultural, biological, mechanical and chemical means using an adaptive management framework. Herbicide terminology and classification, plant-herbicide and soil-herbicide interactions, equipment calibration and dosage calculations.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING

NRES 427 Introduction to the Global Positioning System (GPS)
Crosslisted with: GEOG 427, GEOG 827, NRES 827
Prerequisites: Junior standing.
Notes: Familiarity with mapping and GIS recommended.
Description: Integrated lectures, lab exercises and field experience provide an understanding of GPS technology and applications. Students will learn to collect, correct and use GPS data in a geographic information system (GIS) environment.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Grading Option: Graded with Option
Course and Laboratory Fee: $65

NRES 428 Leadership in Public Organizations
Crosslisted with: ALEC 428, ALEC 828, NRES 828
Prerequisites: Junior standing
Description: Leadership in theories, research, and practices in public organizations and natural resource agencies.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Experiential Learning: Case/Project-Based Learning

NRES 429A Food Security: A Global Perspective
Crosslisted with: PLAS 429A, AGRO 829A, HORT 829A, NRES 829A, NUTR 429A, NUTR 829A
Prerequisites: Junior standing
Description: Overview of the technical and sociocultural dimensions of global food insecurity.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 431 Waterfowl Ecology and Management
Crosslisted with: NRES 831
Prerequisites: NRES 311
Description: Ecology and identification of North American waterfowl, management of habitats and populations, and current management issues.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 432 Programming, Scripting, and Automation for GIS
Crosslisted with: GEOG 432, GEOG 832
Prerequisites: GEOG 217
Notes: Practical experience or other formal preparation in GIS may be substituted for prerequisite by permission.
Description: GIS-focused programming, scripting, and spatial analysis using the Python and R programming languages. Topics include: the ArcPy library, algorithm development, open source geospatial libraries, and the manipulation and analysis of geospatial data.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING
Course and Laboratory Fee: $50
NRES 433 Wildlife Management Techniques
Crosslisted with: NRES 833
Prerequisites: NRES 311
Description: Survey of methods used to obtain data and make decisions for wildlife management. Scientific methods for wildlife science; monitoring and surveys; construction of management plans; habitat use, classification, and management; harvest management.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 10 Integrated Product
Course and Laboratory Fee: $10

NRES 434 Environmental Education and Interpretation
Crosslisted with: NRES 834, ENVR 434
Notes: Requires 20 hours of service.
Description: Examination of formal and informal environmental education and interpretation. Knowledge, application and practice relevant to science teachers and park, extension, museums, and zoo educators.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Experiential Learning: Community Engagement

NRES 435 Agroecology
Crosslisted with: PLAS 435, AGRO 835, NRES 835
Prerequisites: For PLAS/NRES 435: Senior standing. For AGRO/NRES 835: 12 hrs biological or agricultural sciences.
Description: Integration of principles of ecology, plant and animal sciences, crop protection, and rural landscape planning and management for sustainable agriculture. Includes natural and cultivated ecosystems, population and community ecology, nutrient cycling, pest management, hydrologic cycles, cropping and grazing systems, landscape ecology, biodiversity, and socioeconomic evaluation of systems.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 10 Integrated Product

NRES 436 Cenozoic Mammal Evolution
Crosslisted with: GEOL 436, GEOL 836, NRES 836
Prerequisites: Junior or Senior Standing
Description: Survey of mammalian evolution with emphasis on the origin, radiation, and phylogenetic relationships of Cenozoic fossil mammals. Overview of climatic and ecological changes affecting mammalian adaptations and hands on experience with fossil specimens.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING

NRES 438 Grassland Conservation: Planning and Management
Crosslisted with: NRES 838
Prerequisites: UG: Junior Standing; Grad: None
Notes: Recommended: introductory ecology and introductory soils courses
Description: Apply fundamental grassland ecology principles to grassland conservation and identify grassland establishment and management practices appropriate for different environmental and cultural situations. Based on field study, critically analyze management options and outcomes for several grasslands and develop a management plan for a grassland resource.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL
ACE: ACE 10 Integrated Product
Course and Laboratory Fee: $30

NRES 439 Environmental Laboratory Instrumentation and Methods
Crosslisted with: NRES 839
Prerequisites: CHEM 106A & CHEM 106L or CHEM 110A and CHEM 110L
Description: Exposure to technologies such as spectroscopy, discrete automated colorimetry, chromatography and mass spectrometry used for environmental testing. Hands-on training in calibration, operation and sample analysis, proper use of analytical balance, volumetric glassware and micropipettes, creating and maintaining a laboratory notebook, and development and understanding standard operational procedures. Advanced in-lab training in analytical laboratory techniques and operation of advanced instrumentation used in commercial and research environmental laboratories.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded
Offered: FALL/SPR

NRES 440 Great Plains Ecosystem
Crosslisted with: PLAS 440, AGRO 840, NRES 840, RNGE 440, GRAS 440
Prerequisites: Junior standing.
Description: Characteristics of Great Plains ecosystems, interrelationships of ecological factors and processes, and their application in the management of grasslands. Interactions of fire, vegetation, grazing animals and wildlife.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING
NRES 441 Zoo Keeping and Management
Description: Examine and build on the knowledge, skills and abilities needed to work in a zoo in various capacities including animal keeping, guest services and curation. Acquire knowledge in all aspects needed to manage zoos including individual species care, collections, guest services, species conservation, and AZA accreditation. Become familiar with the concepts and challenges associated with the biological, educational, ethical, and administrative aspects of zoo science through partnerships and interactions with local zoos.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Offered: FALL/SPR
ACE: ACE 10 Integrated Product
Course and Laboratory Fee: $100
NRES 442 Wildland Plants
Crosslisted with: PLAS 442, AGRO 842, NRES 842, RNGE 442, GRAS 442
Prerequisites: Junior standing.
Notes: PLAS 131 or LIFE 121 and 121L or equivalent recommended
Description: Wildland plants that are important to grassland and shrubland ecosystem management and production. Distribution, utilization, classification, identification (including identification by vegetative parts), uses by Native Americans, and recognition of grasses, forbs, shrubs, exotic and wetland plants.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL
NRES 443 Global Change & Ecosystems
Crosslisted with: NRES 843
Prerequisites: Junior standing and above
Notes: Background in ecology and NRES 418 recommended.
Description: Examines global change from a biological perspective, focusing on global change impacts on terrestrial and aquatic ecosystems. Considers the scientific literature on biological aspects of global change, and explores the methods used for studying global change, and involves presentation of brief, comprehensible oral and written summaries of this literature. Social, and economic aspects will also be considered.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING
NRES 444 Ecosystem Monitoring and Assessment
Crosslisted with: PLAS 444, AGRO 844, NRES 844, RNGE 444, GRAS 444
Prerequisites: Junior standing.
Notes: NRES 220 or equivalent, recommended.
Description: Measurement and monitoring of the important vegetation and environmental factors used to develop management guidelines in grasslands, savannas, woodlands, and wetlands. Emphasis on using ecosystem monitoring protocols for assessment of wildlife habitat, fuels management for wild-land fire, livestock production, and watershed function. Requires field sampling and travel to local field sites.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL
NRES 446 Pollen Analysis for Behavioral, Biological and Forensic Science
Crosslisted with: FORS 446, FORS 846, NRES 846
Prerequisites: FORS 120
Description: Collection, processing, identification of common North American pollen types. Pollination ecology relating to scene reconstruction. Fundamental statistics and presentation requirements for a legal and scientific audience.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Offered: FALL
NRES 447 Archaeoparasitology: The Archaeology of Disease
Crosslisted with: NRES 847
Description: Study of parasites, their hosts, and the relationship between them. Human parasitology is especially interesting due to the adaptation of human populations to a great variety of parasites over long periods of time in the global diversity of environments. Fundamental understanding of human-parasite relations and methods of recovery of parasites from a variety of archaeological remains.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL
NRES 450 Biology of Wildlife Populations
Crosslisted with: BIOS 450, BIOS 850, NRES 850
Prerequisites: NRES 311; MATH 104 or above; STAT 218 or equivalent
Description: Principles of population dynamics. Management strategies (for consumptive and nonconsumptive fish and wildlife species) presented utilizing principles developed.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Offered: SPRING
Course and Laboratory Fee: $10
NRES 451 Soils, Water, and Environmental Chemistry
Crosslisted with: ENVE 851, NRES 851
Prerequisites: NRES/WATS/SOIL/PLAS/GEOL 361 or graduate standing
Description: Environmental chemistry related to the fate and transport of organic contaminants in soil-water environments. Application of computer simulation models (i.e., MODFLOW) for predicting contaminant fate in aquifers. Basic chemical and biological principles of remediating contaminated soil and water.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Offered: SPRING
ACE: ACE 10 Integrated Product
NRES 452 Climate and Society
Crosslisted with: PLAS 450, GEOG 450, METR 450, AGRO 850, GEOG 850, METR 850, NRES 852
Prerequisites: Junior standing or above.
Notes: Offered spring semester of even-numbered calendar years.
Description: Impact of climate and extreme climatic events on society and societal responses to those events. Global in scope and interdisciplinary.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING

NRES 453 Hydrology
Crosslisted with: NRES 853
Prerequisites: MATH 102 or above
Notes: Not available for credit for engineering students and not a substitute for CIVE 456.
Description: Introduction to the principles of hydrology, with emphasis on the components of the hydrologic cycle: precipitation, evaporation, groundwater flow, surface runoff, infiltration, precipitation runoff relationships.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING
Prerequisite for: AGEN 957, BSEN 957, CIVE 957, GEOL 957

NRES 454 Ecological Interactions
Crosslisted with: BIOS 454, BIOS 854, NRES 854
Prerequisites: LIFE 121; LIFE 121L; BIOS 207 or NRES 220; Senior Standing
Description: Nature and characteristics of populations and communities. Interactions within and between populations in community structure and dynamics. Direct and indirect interactions and ecological processes, competition, predation, parasitism, herbivory, and pollination. Structure, functioning and persistence of natural communities, foodweb dynamics, succession, and biodiversity.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded
Offered: SPRING

NRES 455 Soil Chemistry and Mineralogy
Crosslisted with: PLAS 455, AGRO 855, NRES 855, SOIL 455
Prerequisites: PLAS/SOIL 153 or GEOL 101; CHEM 109A/L and CHEM 110A/L; CHEM 221 or CHEM 221A & CHEM 221L or 251...
Description: Chemical and mineralogical properties of soil components. Inorganic colloidal fraction. Structures of soil minerals as a means of understanding properties, such as ion exchange and equilibria; release and supply of nutrient and toxic materials; and soil acidity and alkalinity. Forms and functions of organic matter in soil.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING

NRES 456 Mathematical Models in Biology
Crosslisted with: BIOS 456, BIOS 856, NRES 856
Prerequisites: LIFE 120; LIFE 120L; LIFE 121; LIFE 121L; MATH 107
Description: Biological systems, from molecules to ecosystems, are analyzed using mathematical techniques. Strengths and weaknesses of mathematical approaches to biological questions. Brief review of college level math; introduction to modeling; oscillating systems in biology; randomness in biology; review of historically important and currently popular models in biology.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 457 Green Space and Urban Forestry Management
Crosslisted with: NRES 857, PLAS 457
Prerequisites: Junior or senior standing, Graduate student or permission
Description: A focus on the management of trees, parks, and green infrastructure in rural and urban communities. Perspectives from community planning, landscape architecture, urban forestry, natural resources, horticulture, and environmental policy. Development and implementation of green space and forest management plans encompassing societal needs and biological limitations in rural and urban communities.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING
ACE: ACE 10 Integrated Product

NRES 458 Soil Physical Determinations
Crosslisted with: PLAS 458, AGRO 858, NRES 858, SOIL 458
Prerequisites: SOIL/PLAS/GEOL/WATS 361; PHYS 141 or equivalent; MATH 102 or 103.
Description: Survey of measurement techniques and principles used in characterizing the physical properties of soils. Includes analysis of experimental design and sources of experimental error. Techniques include: particle size analysis, soil water content, pore size analysis, field sampling techniques, soil strength, and saturated hydraulic conductivity.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Grading Option: Graded with Option

NRES 459 Limnology
Crosslisted with: BIOS 459, BIOS 859, NRES 859, WATS 459
Prerequisites: BIOS 207 or NRES 220; CHEM 106A & CHEM 106L or CHEM 110A & CHEM 110L
Description: Physical, chemical, and biological processes that occur in fresh water. Organisms occurring in fresh water and their ecology; biological productivity of water and its causative factors; eutrophication and its effects.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Offered: SPRING
ACE: ACE 10 Integrated Product
Course and Laboratory Fee: $25
NRES 460 Soil Microbial Ecology
Crosslisted with: PLAS 460, BIO 460, SOIL 460, AGRO 860, BIOS 860, NRES 860
Prerequisites: Senior standing.
Notes: Recommend having a strong science background, including courses from the agronomic, environmental, microbiology, engineering or medicine disciplines.
Description: Soil from a microbe's perspective—growth, activity and survival strategies; principles governing methods to study microorganisms and biochemical processes in soil; mechanisms controlling organic matter cycling and stabilization with reference to C, N, S, and P; microbial interactions with plants and animals; and agronomic and environmental applications of soil microorganisms.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: SPRING

NRES 461 Soil Physics
Crosslisted with: PLAS 461, SOIL 461, WATS 461, AGRO 861, NRES 861
Prerequisites: PLAS/SOIL 153, PHYS 141 or equivalent, one semester of calculus.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 462 Conservation Biology
Crosslisted with: NRES 862
Prerequisites: 12 hours of biological sciences, including NRES 220 and NRES 222 or equivalent.
Description: Current issues in conservation biology. Theoretical principles from the areas of ecology and genetics to effectively preserve and manage biological diversity and small populations.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 463 Fisheries Science
Crosslisted with: NRES 863
Notes: May be offered at Cedar Point Biological Station.
Description: Fisheries biology emphasizing the determination and evaluation of vital statistics for the management of fish populations. Application of modern data collection methods and fish sampling techniques will be used.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 463L Fisheries Science Lab
Crosslisted with: NRES 863L
Notes: May be offered at Cedar Point Biological Station.
Description: Field and laboratory skills needed for fisheries biology emphasizing the determination and evaluation of vital statistics for the management of fish populations. Applied data collection and fish sampling techniques will be used.
Course and Laboratory Fee: Total Seats Needed: 150

NRES 467 Global Climate Change
Crosslisted with: METR 483, METR 883, NRES 867
Prerequisites: Junior standing, and METR 475/875.
Notes: Offered fall semester of even-numbered calendar years.
Description: Elements of climate systems, El Nino/LaNina cycle and monsoons, natural variability of climate on interannual and interdecadal scales. Paleoclimate, and future climate, developed climate change scenarios and climate change impacts on natural resources and the environment.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 468 Wetlands
Crosslisted with: BIOS 458, NRES 868, WATS 468, BSEN 468, BSEN 868
Prerequisites: CHEM 109A and 109L and CHEM 110A and 110L, or CHEM 105A and 105L and CHEM 106A and 106L; Junior or Senior Standing.
Notes: Offered even-numbered calendar years.
Description: Physical, chemical and biological processes that occur in wetlands; the hydrology and soils of wetland systems; organisms occurring in wetlands and their ecology wetland creation, delineation, management and ecotoxicology.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Course and Laboratory Fee: $40

NRES 469 Bio-Atmospheric Instrumentation
Crosslisted with: GEG 469, PLAS 407, METR 469, AGST 469, AGRO 869, GEOG 869, HORT 807, METR 869, AGST 869, NRES 869
Prerequisites: Junior standing, MATH 106; 4 hrs physics; physical or biological science major.
Description: Discussion and practical application of principles and practices of measuring meteorological and related variables near the earth’s surface including temperature, humidity, precipitation, pressure, radiation and wind. Performance characteristics of sensors and modern data collection methods are discussed and evaluated.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
NRES 470 Lake and Reservoir Restoration
Prerequisites: 12 hrs NRES or related fields.
Description: Theory, processes, and mechanisms underlying lake and reservoir water quality degradation and/or pollution and remediation of eutrophications and its effects. Current techniques used to restore and protect degraded lakes.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 472 Applied Soil Physics
Crosslisted with: PLAS 472, AGRO 872, NRES 872, SOIL 472, WATS 472
Prerequisites: PLAS/SOIL 153; MATH 102 or MATH 104 or MATH 106.
Description: Emphasis on applied soil physics. Discussion of theoretical principles followed by field and laboratory exercises and applications. Fluxes of water, solutes, air, and heat through the soil. Emphasis on water infiltration, water retention, other soil hydraulic properties. Components of soil water balance. Management of soil water.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Offered: FALL

NRES 474 Herpetology
Crosslisted with: BIOS 474, BIOS 874, NRES 874
Prerequisites: BIOS/NRES 386 and permission.
Description: Fossil and living amphibians and reptiles. Anatomy, classification, ecology and evolution.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option

NRES 475 Water Quality Strategy
Crosslisted with: NRES 875, SOIL 475, WATS 475, PLAS 475, AGRO 875, CIVE 475, CIVE 875, CRPL 475, CRPL 875, GEOL 475, GEOL 875, AGST 475, AGST 875, POLS 475, POLS 875
Prerequisites: Senior standing.
Notes: Capstone course.
Description: Holistic approach to the selection and analysis of planning strategies for protecting water quality from nonpoint sources of contamination. Introduction to the use of methods of analyzing the impact of strategies on whole systems and subsystems; for selecting strategies; and for evaluating present strategies.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
ACE: ACE 10 Integrated Product

NRES 476 Mammalogy
Crosslisted with: BIOS 476, BIOS 876, NRES 876
Prerequisites: 8 hrs BIOS; BIOS/NRES 386 or NRES 311.
Notes: May also be offered at Cedar Point Biological Station. Field trips are required and may occur outside of scheduled class time. Lab and field time emphasize diversity of mammalian families and species identification of Nebraska mammals.
Description: Evolution, natural history, ecology, and functional morphology of planetary mammals and mammals of the Northern Great Plains.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Course and Laboratory Fee: $25

NRES 477 Great Plains Field Pedology
Crosslisted with: PLAS 477, GEOG 467, SOIL 477, GEOG 867, NRES 877
Prerequisites: PLAS/SOIL 153.
Description: Spatial relationship of soil properties on various parts of landscape typical of the Plains, causal factors, and predictions of such relationships on other landscapes. Grouping these properties into classes, naming the classes, and the taxonomy that results from this grouping. Application of a taxonomy to a real situation through making a field soil survey in a region representative of the Plains border, predicting land use response of various mapped units as it affects the ecosystem, and evaluating the effectiveness of the taxonomic system used in the region surveyed.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option

NRES 478 Regional Climatology
Crosslisted with: METR 478, METR 878, NRES 878
Prerequisites: NRES/METR 370.
Description: Regional differentiation of the climates of the earth on both a descriptive and dynamic basis. The chief systems of climatic classification.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option

NRES 479 Hydroclimatology
Crosslisted with: METR 479, WATS 479, BSEN 479, NRES 879, METR 879, BSEN 879
Prerequisites: NRES 208 or METR 100 or METR/NRES 370.
Notes: Offered spring semester of even-numbered calendar years.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
NRES 481 Stream and River Ecology
Crosslisted with: WATS 481, WATS 881, BIOS 481
Prerequisites: NRES 222 or equivalent
Description: Fundamental physical drivers operating in stream and river ecosystems and how those vary in space and time. Major classes of organisms associated with stream ecosystems and their functional roles. Fundamental controls on biotic diversity in stream and river ecosystems and its variance. Major aspects of stream ecosystem function including energy flow and nutrient cycling. Ecosystem services provided by stream and river ecosystems and causes and consequences of human impacts on streams and rivers. Underlying principles of bioassessment and current methods of stream restoration.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded
Course and Laboratory Fee: $20

NRES 482 Ecophysiology of Wildlife
Crosslisted with: NRES 882
Prerequisites: NRES 220 or BIOS 207; PLAS 215/BIOS 206; BIOS 386
Description: Evaluation of the conserved physiological principles that are broadly used across animal groups, as well as the many unique adaptations used by specific taxa. Focuses on all major vertebrate groups, including fish, birds, mammals, reptiles and amphibians, and links the physiological mechanisms that allow them to survive to the environments in which they live. Highlights methods scientists use to gather physiological information, and the ways in this information can be used by scientists in a variety of different fields.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded

NRES 484 Water Resources Seminar
Crosslisted with: PLAS 484, GEOG 484, GEOL 484, WATS 484, NRES 884, AGRO 884, GEOG 884, GEOL 884, WATS 884
Prerequisites: Junior or above standing
Description: Seminar on current water resources research and issues in Nebraska and the region.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded with Option

NRES 485 Natural Resources Seminar
Crosslisted with: NRES 885
Description: Active listening and critical thinking activities related to seminars on current natural resources research and issues in Nebraska, the Great Plains, and throughout the world.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded
Offered: FALL

NRES 486A Professional Certifications: Certified Interpretive Guide
Crosslisted with: NRES 886A
Description: Professional certification from the National Association of Interpretation. Practical skills for developing quality interpretive programs for museum, nature center, zoo and park visitors. Theoretical foundations of interpretation.
Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Grading Option: Graded

NRES 486B Professional Certifications: Certified Interpretive Host
Crosslisted with: NRES 886B
Description: Receive professional certification from the National Association of Interpretation. Practical skills for staff and volunteers of museums, nature centers, zoos and parks to provide quality customer service.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Grading Option: Graded

NRES 487 Introduction to Landscape Ecology
Crosslisted with: LARC 487
Prerequisites: PLAS/SOIL 153 and BIOS/NRES 220.
Notes: PLAS/LARC/GEOG 200, CIVE 353/853/NRES 853, and CRPL 470 recommended.
Description: The history, principles, and concepts of landscape ecology. Use and application of landscape structure, function in the planning, the design, and management of human and natural landscapes.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded

NRES 488 Groundwater Geology
Crosslisted with: GEOL 488, GEOL 888, NRES 888
Prerequisites: GEOL 100-level course; MATH 106 or equivalent.
Description: Occurrence, movement, and development of water in the geologic environment.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Grading Option: Graded with Option
Prerequisite for: GEOL 470, GEOL 870; GEOL 986, NRES 918
Course and Laboratory Fee: $10

NRES 489 Ichthyology
Crosslisted with: BIOS 489, BIOS 889, NRES 889
Prerequisites: LIFE 120 and LIFE 121
Notes: May also be offered at Cedar Point Biological Station.
Description: Fishes, their taxonomy, physiology, behavior, and ecology. Dynamics of fish stocks and factors regulating their production.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Grading Option: Graded with Option
Course and Laboratory Fee: $20
NRES 491 Special Topics in Geography
Crosslisted with: GEOG 491, GEOG 891
Description: Topics vary.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Grading Option: Graded with Option

NRES 492 International Study Tours in Natural Resource Management
Crosslisted with: NRES 892
Prerequisites: Permission.
Notes: Off-campus travel may be required. Choice of subject matter and coordination of on-and-off-campus study is at the discretion of the instructor.
Description: Group educational tours to sites that illustrate the diversity of approaches to natural resources management found around the world.
Credit Hours: 1-3
Min credits per semester: 1
Max credits per semester: 3
Max credits per degree: 6
Grading Option: Graded with Option
ACE: ACE 9 Global/Diversity
Experiential Learning: Education Abroad

NRES 493 Experiences in Natural Resources
Crosslisted with: NRES 893
Prerequisites: Permission of instructor
Description: Immersive learning experiences in natural resources.
Credit Hours: 0-3
Min credits per semester: 3
Max credits per semester: 3
Max credits per degree: 12
Grading Option: Graded with Option
Experiential Learning: Fieldwork

NRES 495 Grasslands Seminar
Crosslisted with: PLAS 495, ENTO 495, GRAS 495, RNGE 495, SOIL 495
Prerequisites: Junior standing.
Description: Topic varies and deals with different aspects of forage and/or range and/or livestock, turf and/or landscape grasses, natural habitats, and wetlands.
Credit Hours: 1-2
Min credits per semester: 1
Max credits per semester: 2
Max credits per degree: 4
Grading Option: Graded with Option

NRES 496 Independent Study
Prerequisites: 12 hrs natural resource sciences or closely-related fields, and permission.
Description: Individual or group projects in research, literature review, or extension of course work.
Credit Hours: 1-5
Min credits per semester: 1
Max credits per semester: 5
Max credits per degree: 12
Grading Option: Graded with Option

NRES 497 Career Experiences in Natural Resource Sciences
Prerequisites: Sophomore standing; School of Natural Resources (SNR) majors; permission and advanced approval of a plan of work.
Description: Off-campus work experiences sponsored by natural resource agencies, companies, and organizations. Students collaborate in the development of a plan of work that will identify student responsibilities, including a final written report.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Grading Option: Graded with Option
Experiential Learning: Internship/Co-op

NRES 498 Special Topics in Natural Resources
Crosslisted with: NRES 898
Prerequisites: 6 hrs NRES or equivalent.
Description: Current issues in natural resource sciences.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 12
Grading Option: Graded with Option

NRES 499 Thesis Research
Prerequisites: Permission of thesis adviser.
Notes: Requires conducting a scholarly research project and writing an undergraduate thesis.
Credit Hours: 3-6
Min credits per semester: 3
Max credits per semester: 6
Max credits per degree: 6
Grading Option: Graded with Option

NRES 499H Honors Thesis
Prerequisites: Admission to the University Honors Program and permission.
Notes: AGRI 299H recommended.
Description: Conduct a scholarly research project and write a University Honors Program or undergraduate thesis.
Credit Hours: 3-6
Min credits per semester: 3
Max credits per semester: 6
Max credits per degree: 6
Grading Option: Graded

PLEASE NOTE
This document represents a sample 4-year plan for degree completion with this major. Actual course selection and sequence may vary and should be discussed individually with your college or department academic advisor. Advisors also can help you plan other experiences to enrich your undergraduate education such as internships, education abroad, undergraduate research, learning communities, and service learning and community-based learning.
Fisheries & Wildlife - Conservation Biology

Fisheries & Wildlife - Fisheries Ecology & Management

Fisheries & Wildlife - Habitat Management

Fisheries & Wildlife - Law Enforcement

Fisheries & Wildlife - Nature-Based Entrepreneurship

Fisheries & Wildlife - Wildlife Ecology & Management

Fisheries & Wildlife - Zoo Animal Care

Career Information

The following represents a sample of the internships, jobs and graduate school programs that current students and recent graduates have reported.

Jobs of Recent Graduates

- Fisheries Technician, University of Nebraska-Lincoln - Lincoln, NE
- Conservation technician, Nebraska Game and Parks - Battle Creek, NE
- Highway Environmental Biologist, Nebraska Department of Roads - Lincoln, NE
- Sea Turtle Protection Intern, Bald Head Island Conservancy - Bald Head Island, NC
- Forest Products Program Leader, Nebraska Forest Service - Lincoln, NE
- Environmental Scientist, EA Engineering Science and Technology - Lincoln, NE
- Environmental Technician, New Country Environment - Columbus, NE
- Biological Science Technician, U.S. Fish and Wildlife - Leadville, CO
- Big Cat Keeper, In-Sync Exotics - Wylie, TX