DATA SCIENCE (CASNR)

Description

The data science major prepares students with skills and competency in data analysis and interpretation, algorithm design and implementation, and helps them develop aptitudes for interdisciplinary problem-solving. The interdisciplinary program enables students to take advantage of career and employment opportunities across diverse fields involving data-rich, data-driven systems and applications. Ultimately, this will help address the increasing societal and economic need for a qualified workforce in our digital age.

Students can select a major in data science through one of three colleges: Arts and Sciences (Department of Mathematics), Engineering (School of Computing), or Agricultural Science and Natural Resources (Department of Statistics). The data science program offers flexibility for students to earn a dual degree in data science and their chosen discipline's degree program. In addition, students may choose to add a minor that both complements and enhances the data science major.

College Requirements

College Admission

Requirements for admission into the College of Agricultural Sciences and Natural Resources (CASNR) are consistent with general University admission requirements (one unit equals one high school year): 4 units of English, 4 units of mathematics, 3 units of natural sciences, 3 units of social sciences, and 2 units of world language. Students must also meet performance requirements: a 3.0 cumulative high school grade point average OR an ACT composite of 20 or higher, writing portion not required OR a score of 1040 or higher on the SAT Critical Reading and Math sections OR rank in the top one-half of graduating class; transfer students must have a 2.0 (on a 4.0 scale) cumulative grade point average and 2.0 on the most recent term of attendance.

Admission Deficiencies/Removal of Deficiencies

Students who are admitted to CASNR with core course deficiencies must remove these deficiencies within the first 30 credit hours at the University of Nebraska–Lincoln, or within the first calendar year at Nebraska, whichever takes longer. College-level coursework taken to remove deficiencies may be used to meet degree requirements in CASNR.

Deficiencies in the required entrance subjects can be removed by the completion of specified courses in the University or by correspondence.

The Office of Admissions, Alexander Building (south entrance), City Campus, provides information to new students on how deficiencies can be removed.

College Degree Requirements

Curriculum Requirements

The curriculum requirements of the College consist of three areas: ACE (Achievement-Centered Education), College of Agricultural Sciences and Natural Resources Core, and Degree Program requirements and electives. All three areas of the College Curriculum Requirements are incorporated within the description of the Major/Degree Program sections of the catalog. The individual major/degree program listings of classes ensure that a student will meet the minimum curriculum requirements of the College.

World Languages/Language Requirement

Two units of a world language are required. This requirement is usually met with two years of high school language.

Experiential Learning

All undergraduates in the College of Agricultural Sciences and Natural Resources must take an Experiential Learning (EL) designated course. This may include 0-credit courses designed to document co-curricular activities recognized as Experiential Learning.

Minimum Hours Required for Graduation

The College grants the bachelors degree in programs associated with agricultural sciences, natural resources, and related programs. Students working toward a degree must earn at least 120 semester hours of credit. A minimum cumulative grade point average of C (2.0 on a 4.0 scale) must be maintained throughout the course of studies and is required for graduation. Some degree programs have a higher cumulative grade point average required for graduation. Please check the degree program on its graduation cumulative grade point average.

Grade Rules

Removal of C-, D, and F Grades

Only the most recent letter grade received in a given course will be used in computing a student's cumulative grade point average if the student has completed the course more than once and previously received a grade or grades below C in that course.

The previous grade (or grades) will not be used in the computation of the cumulative grade point average, but it will remain a part of the academic record and will appear on any transcript.

A student can remove from their cumulative average a course grade of C-, D+, D, D-, or F if the student repeats the same course at the University of Nebraska and receives a grade other than P (pass), I (incomplete), N (no pass), W (withdrew), or NR (no report). If a course is no longer being offered, it is not eligible for the revised grade point average computation process.

For complete procedures and regulations, see the Office of the University Registrar website at http://www.unl.edu/regrec/course-repeats (http://www.unl.edu/regrec/course-repeats/).

Pass/No Pass

Students in CASNR may take any course offered on a Pass/No Pass basis within the 24-hour limitation established by the Faculty Senate. However, a department may specify that the Pass/No Pass status of its courses be limited to non-majors or may choose to offer some courses for letter grades only.

GPA Requirements

A minimum cumulative grade point average of C (2.0 on a 4.0 scale) must be maintained throughout the course of studies and is required for graduation. Some degree programs have a higher cumulative grade point average required for graduation. Please check the degree program on its graduation cumulative grade point average.

Transfer Credit Rules

To be considered for admission a transfer student, Nebraska resident or nonresident, must have an accumulated average of C (2.0 on a 4.0 scale) and a minimum C average in the last semester of attendance at another college. Transfer students who have completed less than 12 credit hours of college study must submit either ACT or SAT scores.

Ordinarily, credits earned at an accredited college are accepted by the University. The College, however, will evaluate all hours submitted on an application for transfer and reserves the right to accept or reject any of them. Sixty (60) is the maximum number of hours the University will accept on transfer from a two-year college. Ninety (90) is the maximum number of hours the University will accept from a four-year college. Transfer credit in the degree program must be approved by the degree program advisor on a Request for Substitution Form to meet specific course requirements, group requirements, or course level requirements in the major. At least 9 hours in the major field, including the capstone course, must be completed at the University of Nebraska–Lincoln regardless of the number of hours transferred.

The College will accept no more than 10 semester hours of C-, D+, D, and D- grades from other schools. The C-, D+, D, and D- grades can only be applied to free electives. This policy does not apply to the transfer of grades from UNO or UNK to the University of Nebraska–Lincoln.

Joint Academic Transfer Programs

The College of Agricultural Sciences and Natural Resources has agreements with many institutions to support joint academic programs. The transfer programs include dual degree programs and cooperative degree programs. Dual degree programs offer students the opportunity to receive a degree from a participating institution and also to complete the requirements for a bachelor of science degree in CASNR. Cooperative programs result in a single degree from either the University of Nebraska–Lincoln or the cooperating institution.

Dual Degree Programs

A to B Programs

The A to B Program, a joint academic program offered by the CASNR and participating community colleges, allows students to complete the first two years of a degree program at the participating community college and continue their education and study in a degree program leading toward a bachelor of science degree.

The A to B Program provides a basic knowledge plus specialized coursework. Students transfer into CASNR with junior standing.

Depending on the community college, students enrolled in the A to B Program may complete the requirements for an associate of science at the community college, transfer to the University of Nebraska-Lincoln, and work toward a bachelor of science degree.

Participating community colleges include:

- · Central Community College
- · Metropolitan Community College
- · Mid-Plains Community College
- · Nebraska College of Technical Agriculture
- Nebraska Indian Community College
- · Northeast Community College
- · Southeast Community College
- · Western Nebraska Community College

3+2 Programs

Two specialized degree programs in animal science and veterinary science are offered jointly with an accredited college or school of veterinary medicine. These two programs permit CASNR animal science or veterinary science students to receive a bachelor of science degree from the University of Nebraska–Lincoln with a degree in animal science or veterinary science after successfully completing two years of the

professional curriculum in veterinary medicine at an accredited veterinary school. Students who successfully complete the 3+2 Program, must provide transcripts and complete the Application for Degree form via MyRED. Students without MyRED access may apply for graduation in person at Husker Hub in the Canfield Administration Building, or by mail. Students should discuss these degree programs with their academic advisor.

Cooperative Degree Programs

Academic credit from the University and a cooperating institution are applied towards a four-year degree from either the University of Nebraska-Lincoln (University degree-granting program) or the cooperating institution (non-University degree-granting program). All have approved programs of study.

UNL Degree-Granting Programs

A University of Nebraska–Lincoln degree-granting program is designed to provide students the opportunity to complete a two-year program of study at one of the four-year institutions listed below, transfer to CASNR, and complete the requirements for a bachelor of science degree.

Chadron State College. Chadron State College offers a 2+2 program leading to a grassland ecology and management degree program and a transfer program leading to a bachelor of science in agricultural education in the teaching option.

Wayne State College. Wayne State College offers a 3+1 program leading to a bachelor of science in plant biology in the ecology and management option and a 3+1 program leading to a bachelor of science in Applied Science.

University of Nebraska at Kearney. Transfer programs are available for students pursuing degree programs leading to a bachelor of science degree.

University of Nebraska at Omaha. Transfer programs are available for students pursuing degree programs leading to a bachelor of science degree.

Non University of Nebraska-Lincoln Degree-Granting Programs

CASNR cooperates with other institutions to provide coursework that is applied towards a degree at the cooperating institution. Pre-professional programs offered by CASNR allow students to complete the first two or three years of a degree program at the University prior to transferring and completing a degree at the cooperating institution.

Chadron State College–Range Science. The 3+1 Program in range science allows Chadron State College students to pursue a range science degree through Chadron State College. Students complete three years of coursework at Chadron State College and one year of specialized range science coursework (32 credit hours) at CASNR.

Residency

Students must complete at least 30 of the total hours for their degree using University of Nebraska–Lincoln credits. At least 18 of the 30 credit hours must be in courses offered through CASNR¹ (>299) including the appropriate ACE 10 degree requirement or an approved ACE 10 substitution offered through another Nebraska college and excluding independent study regardless of the number of hours transferred. Credit earned during education abroad may be used toward the residency requirement if students register through the University of Nebraska–Lincoln and participate in prior-approved education abroad programs.

The University of Nebraska-Lincoln open enrollment and summer independent study courses count toward residence.

Includes courses taught by CASNR faculty through interdisciplinary prefixes (e.g., LIFE, MBIO, ENVR, SCIL, EAEP, ENSC) and CASNR crosslisted courses taught by non-CASNR faculty.

Online and Distance Education

There are many opportunities to earn college credit online through the University of Nebraska–Lincoln. Some of these credits may be applicable not only as elective credits but also toward the fulfillment of the College's education requirements. Credits earned online may count toward residency. However, certain offerings may not be counted toward scholarship requirements or academic recognition criteria.

For further information, contact:

Office of Online and Distance Education University of Nebraska-Lincoln 305 Brace Labs Lincoln, NE 68588-0109 402-472-4681 http://online.unl.edu/

Independent Study Rules

Students wishing to take part in independent studies must obtain permission; complete and sign a contract form; and furnish copies of the contract to the instructor, advisor, departmental office, and the Dean's Office. The contract should be completed before registration. Forms are available in 103 Agricultural Hall or online at the CASNR website.

Independent study projects include research, literature review or extension of coursework under the supervision and evaluation of a departmental faculty member.

Students may only count 12 hours of independent study toward their degrees and no more than 6 hours can be counted during their last 36 hours earned, excluding senior thesis, internships, and courses taught under an independent study number.

Other College Degree Requirements

Capstone Course Requirement

A capstone course is required for each CASNR degree program. A capstone course is defined as a course in which students are required to integrate diverse bodies of knowledge to solve a problem or formulate a policy of societal importance.

ACE Requirements

All students must fulfill the Achievement Centered Education (ACE) requirements. Information about the ACE program may be viewed at ace.unl.edu (https://ace.unl.edu/).

The minimum requirements of CASNR reflect the common core of courses that apply to students pursuing degrees in the college. Students should work with an advisor to satisfy ACE outcomes 1, 2, 3, 4, 6, and 10 with the college requirements.

Catalog Rule

Students must fulfill the requirements stated in the catalog for the academic year in which they are first admitted to the University of Nebraska–Lincoln or when they were first admitted to a Joint Academic Transfer Program. Students transferring from a community college, but without admission to a Joint Academic Transfer Program, may

be eligible to fulfill the requirements as stated in the catalog for an academic year in which they were enrolled at the community college prior to attending the University of Nebraska-Lincoln. This decision should be made in consultation with academic advisors, provided the student a) was enrolled in a community college during the catalog year they are utilizing, b) maintained continuous enrollment at the previous institution for 1 academic year or more, and c) continued enrollment at the University of Nebraska-Lincoln within 1 calendar year from their last term at the previous institution. In consultation with advisors, a student may choose to follow a subsequent catalog for any academic year in which they are admitted to and enrolled as a degree-seeking student at the University of Nebraska-Lincoln in the College of Agricultural Sciences and Natural Resources. Students must complete all degree requirements from a single catalog year. The catalog which a student follows for degree requirements may not be more than 10 years old at the time of graduation.

Learning Outcomes

The primary student learning outcomes of the interdisciplinary data science major are:

- Foundational knowledge and expertise in the analysis of large-scale data sources from the interdisciplinary perspectives of applied computer science, data modeling, mathematics, and statistics.
- Foundational knowledge and expertise in the application of computing, informatics, and modeling to solve multidisciplinary problems.
- Abilities and professional skills to solve multidisciplinary data science problems as a member of an interdisciplinary team.
- Familiarity with ethical challenges in data science, including ethical collection of data, responsible use of data and algorithmic bias.

Major Requirements

The interdisciplinary data science major includes a set of core requirements, professional experience, and selection of fifteen (15) hours from two focus areas of interest.

College Integrative Course (ACE 8)

SCIL 101	Science and Decision-Making for a Complex World	3		
Credit Hours Subtotal:				
Communication	s			
Written Commun	ication (ACE 1)			
Select one of the following:				
ENGL 150	Writing and Inquiry			
ENGL 151	Writing for Change			
ENGL 254	Writing and Communities			
JGEN 120	Basic Business Communication			
JGEN 200	Technical Communication I			
JGEN 300	Technical Communication II			
Oral Communica	tion (ACE 2)			
Select one of the following:				
ALEC 102	Interpersonal Skills for Leadership			
COMM 101	Communication in the 21st Century			
COMM 209	Public Speaking			
COMM 210	Communicating in Small Groups			

4 Data Science (CASNR)

001414015	V. 10		0005155		
	COMM 215 Visual Communication			Computer Science I: Systems Engineering Foc	
COMM 283				Computer Science I: Engineering and Science	Focus
COMM 286	Business and Professional Communication			Honors: Computer Science I	
JGEN 300	Technical Communication II			Computer Science I	
NRES 301	Environmental Communication Skills		or RAIK 183H	,	
TMFD 121	Visual Communication with Animation		CSCE 311	Data Structures and Algorithms for Informatics	3
Credit Hours Sub		6	or CSCE 310		
Natural Sciences	, ,		or RAIK 283H	Data Structures and Algorithms Honors: Software Engineering III	
	from two of the following areas:	8	CSCE 320		3
	NR Approved Life Sciences:			Data Analysis	3
PLAS 131 & PLAS 132	Plant Science and Agronomic Plant Science Laboratory		or RAIK 370H / Honors: Data and Models II: Data Science CSCE 370H Fundamentals		
BIOS 101 & 101L	General Biology and General Biology Laboratory		Credit Hours Subtotal: Mathematics		9
ENTO 115 /	Insect Biology		MATH 104	Applied Calculus (ACE 3)	3-5
BIOS 115	and Insect Identification		or MATH 106	Calculus I	
& ENTO 116 /			MATH 203	Contemporary Mathematics	3-4
BIOS 116	5 1 1 (8:1		or MATH 107	Calculus II	
LIFE 120	Fundamentals of Biology I		MATH 315	Linear Algebra for Data Science	3
& 120L LIFE 121	and Fundamentals of Biology I laboratory Fundamentals of Biology II		or MATH 314	Linear Algebra	
& 121L	and Fundamentals of Biology II Laboratory		Credit Hours Sub	ototal:	9-12
Select from the f			Statistics		
CHEM 105A	Chemistry in Context I		Select on of the following options:		
	and Chemistry in Context I Laboratory		Option 1:		
CHEM 109A	General Chemistry I		STAT 101	Introduction to Data	3
& CHEM 109L	and General Chemistry I Laboratory		STAT 102	Principles of Statistical Analysis	3
Select from the f	ollowing:		Option 2:		
AGST 109	Physical Principles in Agriculture and Life		STAT 218	Introduction to Statistics	3
PHYS 141	Sciences Physics for Life Sciences I		or STAT 380 / RAIK 270H	Statistics and Applications	
PHYS 151	Elements of Physics		STAT 318	Introduction to Statistics II	3
PHYS 211	General Physics I				12
Credit Hours Sub	·		Credit Hours Subtotal:		-
Economics (ACE		Ü	Total Credit Hour	'S	30-33
Select one of the	•	3	Specific Maio	or Requirements	
ECON 211	Principles of Macroeconomics	J	Professional Exp		
ECON 212	Principles of Microeconomics		STAT 425	Statistical Collaboration II	3
AECN 141	Introduction to the Economics of		or STAT 451	Development of Statistical Software	
712017 1 11	Agriculture		or STAT 471	Analysis of Messy Data	
Credit Hours Sub	-	3	Credit Hours Sub	•	3
ACE Requiremen	t		Additional Cours		
Select one course each from ACE outcomes 5, 7, and 9		9	STAT 212	Principles of Study Design	4
Credit Hours Sub		9	STAT 325	Statistical Collaboration I	3
CASNR Minor			STAT 349	Technical Skills for Statisticians	3
		12-18	Credit Hours Sub		10
advisor			Focus Area Cours		10
Credit Hours Subtotal: 12-18		12-18			15
		41-47	with 9 credit hours in one focus area and 6 credit hours in another focus area.		
			Artificial Intelliger	nce	
Core Requirements			CSCE 421	Foundations of Constraint Processing	
Computer Science			CSCE 472	Digital Image Processing	
CSCE 155T	Computer Science I: Informatics Focus	3	CSCE 473	Computer Vision	

CSCE 474	Introduction to Data Mining				
CSCE 475	Multiagent Systems				
CSCE 476	Introduction to Artificial Intelligence				
CSCE 478	Introduction to Machine Learning				
CSCE 479	Introduction to Deep Learning				
Software Develop	ment				
CSCE 361	Software Engineering				
or RAIK 284HSoftware Engineering IV					
CSCE 378	Human-Computer Interaction				
CSCE 412	Data Visualization				
CSCE 453H / RAIK 453H	Honors: User Interfaces				
CSCE 460	Software Engineering for Robotics				
CSCE 461	Advanced Topics in Software Engineering				
CSCE 464	Internet Systems and Programming				
CSCE 466	Software Design and Architecture				
CSCE 467	Testing, Verification and Analysis				
CSCE 468	Requirements Elicitation, Modeling and				
	Analysis				
RAIK 403H	Honors: RAIK Design Studio III				
RAIK 404H	Honors: RAIK Design Studio IV				
RAIK 405H	Honors: RAIK Research Studio I				
RAIK 406H	Honors: RAIK Research Studio II				
Data Pipeline					
STAT 251	Statistical Computing I: Data Wrangling				
STAT 351	Statistical Computing II: Data Management and Visualization				
CSCE 411	Data Modeling for Systems Development				
CSCE 413	Database Systems				
CSCE 436	Advanced Embedded Systems				
CSCE 438	Internet of Things				
CSCE 458	Molecular and Nanoscale Communication				
CSCE 463	Data and Network Security				
CSCE 465	Wireless Communication Networks				
Mathematical Mod	deling				
MATH 208	Calculus III				
MATH 221	Differential Equations				
MATH 415	Theory of Linear Transformations				
MATH 424	Introduction to Partial Differential Equations				
MATH 428	Principles of Operations Research				
MATH 433	Nonlinear Optimization				
MATH 440	Numerical Analysis I				
MATH 447	Numerical Methods for Applied Math				
MATH 450	Combinatorics				
MATH 452	Graph Theory				
MATH 471	Introduction to Topology				
MATH 487	Probability Theory				
MATH 489	Stochastic Processes				
Statistical Modelii	ng				
STAT 212	Principles of Study Design				
STAT 301	Mathematical Statistics and Modeling I				
STAT 302	Mathematical Statistics and Modeling II				

	OTAT 225	Charling and Callah anglism I	
	STAT 325	Statistical Collaboration I	
	STAT 412	Advanced Statistical Design	
	STAT 414	Introduction to Survey Sampling	
	STAT 432	Introduction to Spatial Statistics	
	STAT 443	Statistical Analysis of Genomics Data	
	STAT 450	Introduction to Regression Analysis	
	STAT 462	Introduction to Mathematical Statistics I: Distribution Theory	
	STAT 463	Introduction to Mathematical Statistics II: Statistical Inference	
	STAT 464	Model Selection and Prediction	
	STAT 474	Introduction to Nonparametric Statistics	
	STAT 475	Introduction to Categorical Data Analysis	
	STAT 478	Introduction to Time Series Analysis	
	STAT 486	Introduction to Bayesian Analysis	
	PLAS 420	Bioinformatics Applications in Agriculture	
	SOCI 465	Survey Design and Analysis	
Αŗ	pplied Computing	: Journalism and Humanities	
	ADPR 358	UX/UI Design	
	HIST 461	Geospatial Approaches in Digital	
		Humanities and Social Sciences	
	HIST 470	Digital History	
	JOUR 307	Data Journalism	
	JOUR 407	Data Visualization	
	SPMC 350	Sports Data Visualization and Analytics	
Αŗ	pplied Computing	: Sociology	
	SOCI 333	Applied Research in Public Opinion	
	SOCI 362	Ethics and the Responsible Conduct of Research	
	SOCI 407	Strategies of Social Research: Qualitative Methods	
	SOCI 430	Advanced Social Network Analysis	
	SOCI 465	Survey Design and Analysis	
Αŗ	pplied Computing	: Natural Resources	
	AECN 401	Advanced Farm Management and Linear Programming	
	AECN 436	Commodity Price Forecasting	
	AGST 433	Equipment and Tractor Testing	
	NRES 218	Introduction to Geospatial Technologies	
	NRES 415	GIS for Agriculture and Natural Resources	
	NRES 418 / GEOG 418	Introduction to Remote Sensing	
	PLAS 420	Bioinformatics Applications in Agriculture	
	PLAS 431 / AGEN 431 / AGST 431	Site-specific Crop Management	
Cr	edit Hours Subt	otal:	15

Additional Major Requirements

Grade Rules

C- and D Grades

A grade of C or above is required for all courses in the major.

6 Data Science (CASNR)

Pass/No Pass

No course taken Pass/No Pass will be counted toward the major unless the course is offered exclusively with a grade option of Pass/No Pass.