HORT 801 Biology of Plant Pathogens
Crosslisted with: PLPT 801, AGRO 801
Prerequisites: PLPT 369 or equivalent
Description: Molecular and cellular approach to the study of plant pathological principles.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: PLPT 866, PLPT 965, AGRO 965, HORT 965

HORT 802 Ecology and Management of Plant Pathogens
Crosslisted with: PLPT 802, AGRO 802
Prerequisites: PLPT 369 or equivalent; an introduction to biochemistry course
Description: Principles of plant disease epidemiology and disease control through cultural, biological, chemical and host plant resistance strategies.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: PLPT 866, PLPT 965, AGRO 965, HORT 965

HORT 803 Scientific Writing and Communication
Crosslisted with: AGRO 403, AGRO 803, HORT 403
Prerequisites: Senior standing or higher, an ACE 1 written communication course, an ACE 2 oral communication course, and permission of instructor.
Description: Reading and critiquing, writing, and presenting scientific information. Use research data to compose a manuscript in standard scientific format, and prepare and present a poster to a general audience. Ethical issues in research and writing.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

HORT 806 Plant Ecophysiology: Theory and Practice
Crosslisted with: AGRO 806, HORT 406, NRES 406, NRES 806, AGRO 406
Prerequisites: Junior standing, 4 hrs ecology, and 4 hrs botany or plant physiology.
Description: Principles of plant physiology which underlie the relationship between plants and their physical, chemical and biotic environments. An introduction to the ecological niche, limiting factors and adaptation. An overview of the seed germination and ecology, plant and soil water relations, nutrients, plant energy budgets, photosynthesis, carbon balance and plant-animal interactions. An introduction to various field equipment used in ecophysiological studies.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC

HORT 807 Bio-Atmospheric Instrumentation
Crosslisted with: AGRO 469, GEOG 469, HORT 407, METR 469, MSYM 469, NRES 469, AGRO 869, GEOG 869, METR 869, MSYM 869, NRES 869
Prerequisites: Junior standing, MATH 106; 4 hrs physics; physical or biological science major.
Description: Discussion and practical application of principles and practices of measuring meteorological and related variables near the earth's surface including temperature, humidity, precipitation, pressure, radiation and wind. Performance characteristics of sensors and modern data collection methods are discussed and evaluated.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

HORT 808 Microclimate: The Biological Environment
Crosslisted with: AGRO 408, GEOG 408, HORT 408, METR 408, NRES 408, WATS 408, AGRO 808, GEOG 808, METR 808, NRES 808
Prerequisites: Junior standing, MATH 106 or equivalent, 5 hrs physics, major in any of the physical or biological sciences or engineering.
Description: Physical factors that create the biological environment. Radiation and energy balances of earth's surfaces, terrestrial and marine. Temperature, humidity, and wind regimes near the surface. Control of the physical environment through irrigation, windbreaks, frost protection, manipulation of light, and radiation. Applications to air pollution research. Instruments for measuring environmental conditions and remote sensing of the environment.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: AGRO 907, HORT 907, METR 907, NRES 907; BSEN 954, NRES 954
Groups: Physical Geography

HORT 809A Case studies in plant breeding: Breeding for Disease Resistance
Crosslisted with: AGRO 409A, AGRO 809A, HORT 409A
Description: The application of fundamental genetics principles in inheritance, gene mapping and DNA analysis to decision making by plant breeders with the goal of improving disease resistance in crop cultivars. Learning is structured by the genetics discovery story told in published research articles and the thinking process of plant breeders who will use these discoveries in their work.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC

HORT 809A Case studies in plant breeding: Transgenic strategies for disease resistance
Crosslisted with: AGRO 409B, AGRO 809B, HORT 409B
Description: The application of basic science and technology by plant genetic engineering experts with the goal of teaming with plant breeders to improve disease resistance in crop cultivars. Learning is structured by the genetics discovery story told in published research articles and the thinking process of genetic engineers and plant breeders who will use these discoveries in their work.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Crosslisted with</th>
<th>Prerequisites</th>
<th>Description</th>
<th>Credit Hours</th>
<th>Max credits per semester</th>
<th>Max credits per degree</th>
<th>Format</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORT 810</td>
<td>Plant Molecular Biology</td>
<td>AGRO 810, BIOS 810</td>
<td>AGRO 215 or BIOS 206, BIOS 831</td>
<td>Molecular genetic basis of biological function in higher plants. Genome organization, gene structure and function, regulation of gene expression, recombinant DNA, and genetic engineering principles. Material taken primarily from current literature.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td>SPRING</td>
</tr>
<tr>
<td>HORT 811</td>
<td>Plant Tissue Culture</td>
<td>BIOS 811, NRES 811</td>
<td>BIOS 811</td>
<td>Survey of techniques used in plant cell, tissue and organ culture, including current research. Laboratory emphasizes practical manipulation of plant cells, tissues, and organs, including examples from woody and herbaceous plant species.</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>HORT 812</td>
<td>Landscape Ecology</td>
<td>NRES 810</td>
<td>12 hrs biological sciences or related fields including BIOS 320</td>
<td>Spatial arrangements of ecosystems, the interaction among component ecosystems through the flow of energy, materials and organisms, and alteration of this structure through natural or anthropogenic forces.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>HORT 813</td>
<td>Turfgrass and Landscape Weed Management</td>
<td>AGRO 813, TLMT 813</td>
<td>AGRO 325 or basic course in plant physiology</td>
<td>Fundamental terminology associated with turfgrass and landscape weed management. Weed identification and the cultural practices and herbicide strategies to limit weed invasion and persistence.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>HORT 814</td>
<td>Turfgrass Disease Management</td>
<td>AGRO 414, AGRO 814, HORT 414, PLPT 414, PLPT 814, TLMT 414, TLMT 814</td>
<td>BIOS/PLPT 369 or one semester of introductory plant pathology.</td>
<td>Pathogens, epidemiology, and control of diseases specific to turfgrass.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>HORT 817</td>
<td>Plant Pathology Principles and Application</td>
<td>PLPT 817, AGRO 817</td>
<td>AGRO 215 or BIOS 206, BIOS 831</td>
<td>Introduction to the biology of plant pathogenic organisms; pathogen-plant interactions; environmental influences; cultural, resistance, and chemical strategies for plant disease management.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>HORT 818</td>
<td>Agroforestry Systems in Sustainable Agriculture</td>
<td>HORT 418, NRES 417, NRES 817</td>
<td>AGRO 325 or basic course in plant physiology</td>
<td>The roles of woody plants in sustainable agricultural systems of temperate regions. Emphasis on the ecological and economic benefits of trees and shrubs in the agricultural landscape. Topics include: habitat diversity and biological control; shelterbelts structure, function, benefits and design; intercropping systems; silvopastoral systems; riparian systems; and production of timber and specialty crops.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>HORT 821</td>
<td>Learning Biotechnology</td>
<td>AGRO 821</td>
<td>AGRO and/or closely related HORT and/or BIOS</td>
<td>Investigate biotechnology and its application in solving problems and connect biotechnology to basic science concepts in biology and chemistry. Integrate individually-designed biotechnology lessons into learning standards.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>HORT 822</td>
<td>Integrated Weed Management</td>
<td>AGRO 822</td>
<td>AGRO 325 or basic course in plant physiology</td>
<td>Principles and application of (IWM). Noxious and invasive weed species. Crops and weed control. Plant population shifts. Use of herbicides and the biologically effective dose. Critical period of weed control and weed threshold. Herbicide tolerant crops.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>HORT 824</td>
<td>Plant Nutrition and Nutrient Management</td>
<td>AGRO 824</td>
<td>AGRO 325 or basic course in plant physiology</td>
<td>Macro and micro nutrient elements and their function in the growth and development of plants. Role of single elements. Interaction and/or balances between elements and nutrient deficiency and/or toxicity symptoms as they affect the physiology of the whole plant. Relationship between crop nutrition and production and/or environmental considerations (e.g. yield, drought, temperature, pests).</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Crosslisted with</td>
<td>Prerequisites</td>
<td>Description</td>
<td>Credit Hours</td>
<td>Max credits per semester</td>
<td>Max credits per degree</td>
<td>Format</td>
<td>Offered</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------------------</td>
<td>------------------------------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>HORT 826</td>
<td>Invasive Plants</td>
<td>AGRO 426, AGRO 826, HORT 426, NRES 426, NRES 826</td>
<td>AGRO/HORT/SOIL 153, AGRO/HORT 131</td>
<td>Identification, biology and ecology of weedy and invasive plants. Principles of invasive plant management by preventative, cultural, biological, mechanical and chemical means using an adaptive management framework. Herbicide terminology and classification, plant-herbicide and soil-herbicide interactions, equipment calibration and dosage calculations.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td>SPRING</td>
</tr>
<tr>
<td>HORT 827</td>
<td>Turfgrass Systems Management</td>
<td>AGRO 427, HORT 427, TLMT 427, AGRO 827, TLMT 827</td>
<td>TLMT 227 and TLMT 327</td>
<td>Critical evaluation of turfgrass settings to create economical and environmentally friendly management systems for professionally managed turf areas.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td>SPRING</td>
</tr>
<tr>
<td>HORT 828</td>
<td>Scientific Illustration</td>
<td>ENTO 828, AGRI 828, AGRO 828</td>
<td></td>
<td>Prepare scientifically accurate, high quality illustrations and graphics for the teaching, presentation, and publication of scientific information. Drawing techniques, drafting, copyright, and publication and presentation of scientific art work.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>HORT 832</td>
<td>Learning Plant Science</td>
<td>AGRO 832</td>
<td></td>
<td>The biology of plants grown for food, fiber, fuel and fun. Connect applied plant science to basic science concepts in biology and chemistry. Integrate individually-designed plant science lessons into learning standards.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>HORT 836</td>
<td>Agroecosystems Analysis</td>
<td>AGRO 436, AGRO 836, HORT 436</td>
<td></td>
<td>Survey of the principles and practice of plant pathology. The main and genetic elements in plant disease will be covered. Many of the major diseases, as well as their causes and effects, will be surveyed. Course is taught by faculty from the University of Nebraska-Kearney, and will be offered in the spring semester of even-numbered calendar years. To enroll, students must be accepted into the horticulture graduate certificate program or get permission.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>HORT 839</td>
<td>Organic Farming and Food Systems</td>
<td>AGRO 839, AGRO 439, HORT 439</td>
<td></td>
<td>History of organic farming and horticultural systems, organic certification, nutrient and pest management in organic systems, planning organic enterprises including production and marketing, resilience of organic systems in ecological, economic, and social terms; future issues and potentials of organic food systems.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>HORT 840</td>
<td>Turfgrass and Landscape Integrated Pest Management</td>
<td>TLMT 840</td>
<td></td>
<td>Principles of turfgrass and landscape plant pest management and tools to implement Integrated Pest Management (IPM) approaches. Creating healthy landscapes and effectiveness of IPM alternatives.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>LEC</td>
<td></td>
</tr>
<tr>
<td>HORT 841</td>
<td>Perennial Plant Function, Growth, and Development</td>
<td>AGRO 441, AGRO 841, HORT 441, RNGE 441, GRAS 441</td>
<td>AGRO 325 or equivalent</td>
<td>Principles of crop physiology and developmental morphology in relation to function, growth, development, and survival of perennial forage, range, and turf plants. The relationship of physiology and morphological development on plant use and management.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td>SPRING</td>
</tr>
<tr>
<td>HORT 842A</td>
<td>Plant Pathology</td>
<td>AGRO 842</td>
<td></td>
<td>Survey of the principles and practice of plant pathology. The main and genetic elements in plant disease will be covered. Many of the major diseases, as well as their causes and effects, will be surveyed. Course is taught by faculty from the University of Nebraska-Kearney, and will be offered in the spring semester of even-numbered calendar years. To enroll, students must be accepted into the horticulture graduate certificate program or get permission.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>LEC</td>
<td></td>
</tr>
</tbody>
</table>
HORT 842B Plant Physiology

Description: Life processes of plants, with an emphasis on water relations and hormonal and stress physiology. Includes fundamental concepts underlying the science of crop physiology, including crop phenology, canopy development and light interception, photosynthesis and respiration, and dry matter partitioning. Course is taught by faculty from the University of Nebraska-Kearney, and will be offered in the fall semester of even-numbered calendar years. To enroll, students must be accepted into the horticulture graduate certificate program or get permission.

Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

HORT 842E Floral Crops Production and Handling

Prerequisites: Admission to the Horticulture graduate certificate program; and permission

Notes: Distance education course delivered by Kansas State University.

Description: Principles and commercial practices for producing floral potted crops and cut flowers and the physical responses of plants to their environment. Aspects of post harvest physiology.

Credit Hours: 2
Max credits per semester: 2
Max credits per degree: 2
Format: LEC

HORT 842J Water Issues in Lawn and Landscape

Prerequisites: Admission to the Horticulture graduate certificate program; and permission

Notes: Distance education course delivered by Kansas State University.

Description: Critical water issues related to irrigation in urbanizing watersheds and water quality and quantity. Factors impacting water scarcity and quality. Interrelatedness of correct irrigation practices and water quality/quantity and equip students to protect water resources through application of science-based irrigation practices.

Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

HORT 843A Greenhouse Crop Production

Prerequisites: Admission to the Horticulture graduate certificate program; and permission

Notes: Distance education course delivered by Texas Tech University.

Description: Introduction to the concepts of greenhouse construction, operation and management for a variety of horticultural crops, with an emphasis on ornamental crops. Greenhouse construction, heating, cooling, growing media, pest management, nutrition, fertility, growth regulation, irrigation, post-harvest handling, and marketing of greenhouse crops.

Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC

HORT 843B Seed Sciences

Prerequisites: Admission to the Horticulture graduate certificate program; and permission

Notes: Distance education course delivered by Texas Tech University.

Description: Seed morphology, anatomy, and chemistry. Germination, emergence, and dormancy processes in seed, as well as various quality aspects including vigor, longevity, and deterioration. Discussion of genetically engineered seeds and other current topics.

Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

HORT 843E Advanced Interiorscaping

Prerequisites: Admission to the Horticulture graduate certificate program; and permission

Notes: Distance education course delivered by Texas Tech University.

Description: Familiarize advanced students with current state of knowledge on herbicide modes and mechanisms of action and recent developments by industry and universities in plant physiology. Integration of plant pathology, plant physiology, biochemistry, plant breeding, and principles of weed science as they relate to herbicide modes and mechanisms of action.

Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC

HORT 843K Advanced Arboriculture

Prerequisites: Admission to the Horticulture graduate certificate program; and permission

Notes: Distance education course delivered by Texas Tech University.

Description: Physiological principles and industry practices in the production, moving, care, and maintenance of interior plants. Career tools to design, install and maintain interior plant-scapes. Review of pertinent literature and class exercises designed to improve skills and knowledge of interior plant physiology, care and maintenance.

Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
HORT 843M Weed Science
Prerequisites: Admission to the Horticulture graduate certificate program; and permission
Notes: Distance education course delivered by Texas Tech University. HORT 843M is offered fall semester of odd-numbered calendar years.
Description: Weeds and weed control methods in agronomic and horticultural crops and turf grass with chemical weed control. History of weed control, weed characteristics, weed competition, and methods of weed control including mechanical, cultural, biological, and chemical. Discussion of herbicides by family with regard to chemical structure, efficacy, mode and mechanism of action, crop selectivity, soil activity and persistence, and cost.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

HORT 844A Environmental Nursery Production Practices
Prerequisites: Admission to the Horticulture graduate certificate program; and permission
Notes: Distance education course delivered by North Carolina State University. HORT 844A is offered spring semester of odd-numbered calendar years.
Description: Cultural nursery crop production practices presented in consideration of current best management practices, conservation of resources, scientific research-based investigations related to nursery cultural practices, potential risks to nursery personnel, and off-site movement of airborne materials and effluents to surrounding areas and public watersheds.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

HORT 844B Environmental Stress Physiology
Prerequisites: Admission to the Horticulture graduate certificate program; and permission
Notes: Distance education course delivered by North Carolina State University. HORT 844B is offered spring semester every year and fall semester of even-numbered calendar years.
Description: Physiology of plant responses to environmental stresses, with emphasis on current research in selected physiological, molecular, and biochemical mechanisms for tolerance to environmental stresses, such as temperature extremes, drought, salt, pathogens and other plants.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC

HORT 844E General Viticulture
Prerequisites: Admission to the Horticulture graduate certificate program; and permission
Notes: Distance education course delivered by North Carolina State University. HORT 844E is offered spring semester of odd-numbered calendar years.
Description: Aspects of grapes from vine anatomy to final products. Cultivars, propagation, canopy management, diseases, weed control, physiology, anatomy, irrigation, wine production, climates and soils.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

HORT 849 Woody Plant Growth and Development
Crosslisted with: BIOS 849, NRES 849
Prerequisites: CHEM 251 and AGRO 325
Description: Plant growth and development specifically of woody plants as viewed from an applied whole-plant physiological level. Plant growth regulators, structure and secondary growth characteristics of woody plants, juvenility, senescence, abscission and dormancy.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

HORT 871 Vines, Wines and You
Crosslisted with: HORT 471, NUTR 471, NUTR 671, HRTM 471, HRTM 671
Prerequisites: 6 hrs science or equivalent experience; 21 years of age or older
Notes: Proof of age is required.
Description: Origin, botany, historical and cultural significance of the grapevine and related species. Principles and practices of vineyard establishment, management and processing of grape products, importance and/or scope of grape and wine industry; global and local significance. Culinary applications, health, environmental and safety-related issues, business and industry relations and experience.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

HORT 878 Plant Anatomy
Crosslisted with: BIOS 478, BIOS 678, AGRO 478, AGRO 678, HORT 478
Prerequisites: 8 hrs biological sciences
Notes: BIOS 109 recommended.
Description: Development, structure, and function of tissues and organs of the higher plants. Relationships of structure to physiology and ecology of plants.
Credit Hours: 4
Max credits per semester: 4
Max credits per degree: 4
Format: LEC
Prerequisite for: BIOS 879

HORT 880 Modified Rootzones
Crosslisted with: AGRO 480, HORT 480, TLMT 480, TLMT 680, AGRO 880
Notes: Offered as a five-week course.
Description: Modified rootzones and their applications in the turfgrass and landscape management industry. Correct applications and construction techniques.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC

HORT 888 Entrepreneurship and Enterprise Development
Crosslisted with: HORT 488, EAEP 488, AGRO 488, ENTR 488, EAEP 888, AGRO 888, ENTR 888, ABUS 488
Description: The process of starting your own enterprise. Competitive environment, risk management, finance for business startups, funding, and business plan writing.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: FALL/SPR
HORT 889 Urbanization of Rural Landscapes
Crosslisted with: AGRO 489, CRPL 489, HORT 489, CRPL 889
Prerequisites: Senior standing or graduate standing.
Description: Development converts rural landscapes into housing, roads, malls, parks, and commercial uses. This process fragments landscapes and changes ecosystem functions, drives up land prices, and pushes agriculture into more marginal areas. This multi-disciplinary, experiential course guides students in learning about the urbanization process, the impacts on landscapes, people, and the community, and the choices that are available to informed citizens.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

HORT 894 Graduate Degree Project Credits
Crosslisted with: AGRO 894
Prerequisites: Admission to Master of Agronomy or Horticulture degree program
Notes: Project activity for the nonthesis option II MS degree.
Description: Design, develop and complete a project that requires synthesis of the course topics covered in the primary area of emphasis.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Format: IND

HORT 896 Independent Study
Prerequisites: 12 hrs plant sciences, permission and advance approval of plan of work
Description: Individual or group projects in research and literature review under supervision and evaluation of a departmental faculty member.
Credit Hours: 1-5
Min credits per semester: 1
Max credits per semester: 5
Max credits per degree: 5
Format: IND

HORT 897 Master of Applied Science Project
Crosslisted with: AGRI 897, AGRO 897, NRES 897
Prerequisites: Admission to Master of Applied Science degree program
Notes: Project activity for the Master of Applied Science degree.
Description: Design, develop and complete a project that requires synthesis of the course topics covered in the primary area of emphasis.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Format: IND

HORT 899 Masters Thesis
Prerequisites: Admission to masters degree program and permission of major adviser
Credit Hours: 1-10
Min credits per semester: 1
Max credits per semester: 10
Max credits per degree: 99
Format: IND

HORT 907 Agricultural Climatology
Crosslisted with: AGRO 907, METR 907, NRES 907
Prerequisites: NRES 808; STAT 801A or equivalent
Description: Offered spring semester of odd-numbered calendar years. Analysis and use of climatological data as applied to agricultural activities and the use of climatological information to assist in decision making.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

HORT 919 Plant Genetics
Crosslisted with: AGRO 919
Prerequisites: AGRO 215
Description: Focus student learning on principles related to mendelian, population, and molecular genetics of plants including allelisms, nonallelic gene interaction, linkage and recombination, mode of inheritance, mutation, epigenetics, DNA-based markers and mapping techniques, inheritance of qualitative and quantitative traits, and plant transformation.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

HORT 920 Xenobiotics in the Environment
Crosslisted with: AGRO 920, ENTO 920, EOHT 920, NRES 920
Prerequisites: Recommend one course each in organic chemistry, soil science, biochemistry, plant physiology, microbiology and ecology
Description: Fate and ecotoxicological impacts of biologically foreign compounds in soil-water-plant environments; uptake, mechanisms of toxicity and metabolism in plants and other biota. Herbicides and other pesticides.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC

HORT 931 Population Genetics
Crosslisted with: AGRO 931, ASCI 931
Prerequisites: AGRO 215 and STAT 801A
Description: Structure of populations, forces affecting gene frequency and frequency of genotypes, continuous variation, population values and means, genotypic and environmental variances and covariances.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Prerequisite for: AGRO 932, STAT 847; ASCI 932; ASCI 933; ASCI 944, STAT 844

HORT 963 Genetics of Host-Parasite Interaction
Crosslisted with: AGRO 963, PLPT 963
Prerequisites: BIOS 820; and permission
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
HORT 965 Plant Virology
Crosslisted with: PLPT 965, AGRO 965
Prerequisites: PLPT 801 or 802; and permission.
Notes: PLPT 865 is offered odd-numbered calendar years.
Description: Virus molecular biology; virosphere; virus-vector relationships; plant resistance to virus infection economic impact and control of plant diseases by viruses.
Credit Hours: 3
Max credits per semester: 3
Max credits per degree: 3
Format: LEC
Offered: SPRING

HORT 968 Seminar in Plant Pathology
Crosslisted with: PLPT 968, AGRO 968
Prerequisites: Permission
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 1
Format: LEC
Offered: SPRING

HORT 991 Seminar Presentation and Evaluation
Crosslisted with: AGRO 991
Description: Various topics in horticulture, agronomy or related subjects. Emphasis on techniques.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 2
Format: LEC

HORT 992 General Seminar
Crosslisted with: AGRO 992, NRES 992
Notes: Agronomy and Horticulture PhD students should enroll in this course twice.
Description: Expected of all Agronomy and Horticulture graduate students. Presentation of thesis/dissertation or non-thesis topics in agronomy, horticulture or related subjects. Agronomy and Horticulture PhD students should enroll in this course twice.
Credit Hours: 1
Max credits per semester: 1
Max credits per degree: 5
Format: LEC

HORT 996 Research Other Than Thesis
Prerequisites: Permission
Description: Investigations, without reference to thesis work, on genetic, physiological, ecological, meteorological, and morphological aspects of horticultural crops.
Credit Hours: 1-6
Min credits per semester: 1
Max credits per semester: 6
Max credits per degree: 6
Format: IND

HORT 999 Doctoral Dissertation
Crosslisted with: AGRO 999
Prerequisites: Admission to doctoral degree program and permission of supervisory committee chair.
Notes: AGRO 999 is pass/no pass only.
Credit Hours: 1-24
Min credits per semester: 1
Max credits per semester: 24
Max credits per degree: 99
Format: IND